
 Advanced search

Linux Journal Issue #33/January 1997

Features

Let Linux Speak by David Sugar
How an ad for a speech synthesizer led to the the development
of a speech server under Linux.

Booting Linux from EPROM by Dave Bennett
A quick look at making Linux bootable from EPROM on a
486single board computer.

Using Linux with Programmable Logic Controllers by J.P.G. Quintana
Combining programmable logic controllers with linux can be
acost-effective and robust method for providing
specializedcontrol systems.

News & Articles

Disk Maintenance under Linux (Disk Recovery) by David A Bandel
Satellite Tracking with Linux by Kenneth E Harker
Free SCO OpenServer Has Its Place by Evan Leibovitch
Caldera's Bryan Sparks by Phil Hughes

Reviews

Product Review Netactive SynergieServer Pro by Jonathan Gross

WWWsmith

Java and Client-Server by Joe Novosel
At the Forge CGI Programming by Reuven Lerner

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/033/0179.html
https://secure2.linuxjournal.com/ljarchive/LJ/033/0243.html
https://secure2.linuxjournal.com/ljarchive/LJ/033/1339.html
https://secure2.linuxjournal.com/ljarchive/LJ/033/0193.html
https://secure2.linuxjournal.com/ljarchive/LJ/033/0212.html
https://secure2.linuxjournal.com/ljarchive/LJ/033/1358.html
https://secure2.linuxjournal.com/ljarchive/LJ/033/1360.html
https://secure2.linuxjournal.com/ljarchive/LJ/033/0242.html
https://secure2.linuxjournal.com/ljarchive/LJ/033/0155.html
https://secure2.linuxjournal.com/ljarchive/LJ/033/1359.html

Columns

Take Command unzip by Greg Roelofs
New Products
Linux Gazette Two Cent Tips by Marjorie Richardson

Archive Index

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/033/1324.html
https://secure2.linuxjournal.com/ljarchive/LJ/033/0245.html
https://secure2.linuxjournal.com/ljarchive/LJ/033/0246.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Let Linux Speak

David Sugar

Issue #33, January 1997

Set up a speech server on your PC Linux machine with the Computalker.

“User root is now on-line”. Words to be dreaded when one is away from the
terminal, and not logging in otherwise. But how does one know what is going
on with one's machine when not in front of it? If only the machine could tell
you. In this article I discuss a tool which enables your machine to do just that.

It all started a year back, when, thumbing through one of those odd electronic
magazines, I came across an ad for a little speech synthesizer. This device was
essentially a low cost serial-based text-to-speech synthesizer using the SPO256-
AL2 chip. I believe this was the same chip used in the original Mattel “Speak &
Spell” toy.

After a couple of months, I thought about it again and decided I just had to
have it. Certainly, the price was right (about US $50.00), and serial ports grew
on my main Linux machine like branches on a tree. So I ordered one. After a
few weeks, I called and was told my order had just been hand-made and would
be out in a few days. It is a delight to find hand-made electronics in these
modern times—almost like the days when furniture manufacturing involved
real craftsmanship.

In any case, the unit arrived as promised, complete with schematics, a disk
filled with DOS programs and a thin manual. The disk I have yet to look at; after
all, this was for use with a Linux machine. The board slid into a PC slot easily
enough. The card uses the PC slot for power only. An RS-232 connector in the
back connects to a serial port. A separate stand-alone power unit and case is
available for $29.00 more. But having another power pack to plug in was
enough to keep me awake at night. A slot I could afford; though I now foresee
the time when I will fill up all eight slots in the machine.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

The board has its own built-in speaker and an RCA jack. The RCA jack I quickly
adapted to feed the background music (BGM) source on my PBX at home.
(Okay, so it's really a Panasonic digital hybrid key system, to be technical,
although it has ambitions.) I connected the serial port and got a brief noise as
DTR was raised. I shortly learned this was supposed to say “Okay”, but the
impedance-matching on the RCA jack was poor.

Next, I changed the stty settings on the port to match the speed I had selected
for the device via dip switches, and, with high expectations, I tried a simple test:

echo "Hello, my name is Rochester" >/dev/ttyS2

The monotone response I received back sounded a little like “Hewlo, my name
is Rokheestar” and reminded me of my last visit to Atlanta, where they use a
deliberately harsh-sounding cybernetic voice on the inter-terminal shuttle
trains. Hmmm, maybe it is time to look at the manual, and maybe even that
disk...

Several limitations and problems became immediately obvious. The first was
the text-to-speech algorithms handled words only. Numbers are simply spoken
as a series of digits. Hence 91 becomes “nine one”, instead of “ninety-one”. This
can be solved by some simple look-up tables and text substitution.

Second, while technically the device acts as a text-to-phonetic speech device, no
special means, such as control or escape sequences, allow direct access to the
phonetic elements and sounds the device can produce; the text-to-speech code
hides them. This second limitation can be resolved by using alternate spellings,
though not necessarily phonetic spellings, that saturate the internal algorithm
toward different phonetic choices. A little experimentation was required to get
a good idea of how the device actually translated text to speech.

Since extensive table substitution was now needed, I considered the next
logical step; to develop a driver as a front end for the device. Ideally, any driver
should be able to read straight text the way a person normally would. First,
numbers should be pronounced as numbers and not as digits. Similarly, many
common numeric constructs used in normal text—such as currency amounts,
standard formatted date and time fields, percentages, telephone numbers, etc.
—have pronunciation rules I wished to encapsulate and emulate properly. The
Internet has its own idioms, like x@y.z, which should be pronounced as “x at y
dot z”. I decided to cover all of these, as well as in-line text substitution for
correct word pronunciation.

In the end, I decided on a server sitting on a TCP socket. The server would
accept a connection from the user application on a known port and pronounce
any text received according to a reasonable set of rules (as stated above). I

added an escape mode to allow for spelling words out and single-digit
announcement modes. I could establish a simple telnet session with the server,
then test the device by typing text.

The TCP server offered another advantage. Only one application can be
serviced by the device at a time—otherwise speech would be garbled together
from multiple sources. The use of a TCP session assures that only one
connection would be accepted by the server and kept active until closed by the
client. Other client applications can block as backlog while waiting for the
current application to finish talking. The simplicity offered by backlogging, over
the use of lock files was the reason I chose to use a full server instead of a task
initiated by inetd.

With the server in place, it was only a matter of time before speech synthesis
would pervade other system services. The first use I made of the server was to
monitor my BBS system. By connecting it to the user login quota manager, I
could have the device announce as users logged in and out. Similarly, the
traditional sysop page can be carried over this device.

Eventually I tied the SPO server into my implementation of the wall command
and then created other utilities to provide verbal monitoring of my Internet
server. Verbal monitoring would watch for and announce new e-mail for me, as
well as basic system stats such as uptime and disk usage every hour. As all this
speech can be annoying at night, I added a simple muting schedule to the
server. Most curious and entertaining is my replacement for shutdown, called
simply “down”.

For system monitoring, the speech device has proven to be quite a useful tool
—not a nuisance. The server was developed for the ability to read written text
and properly pronounce common usages and conventions, and while I use this
capability minimally, others might have more occasion for it. The pronunciation
dictionary can be expanded as needed to cover a wider range of words as they
are identified in everyday use.

One use for the device which was suggested to me is as a screen reader for
visually-impaired computer users. Another application I am looking at is in
parking incoming phone calls and paging or announcing calls through the
telephone system. I have often wished the board included a DTMF tone
generator and a SLICK, so I may look at modifying the schematics provided.

The SPO-256-AL2 text-to-speech board described here may be purchased
through B.G. Micro, P.O. Box 280298, Dallas, TX 75228 (214) 271-5546. The
Computalker lists for around $50.00 (U.S.) as a PC card or $80.00 (U.S.) stand-

alone with a power adapter. Chips are available separately, and I believe the
Computalker may be purchased in kit form.

While the SPO is serial-based and can be used on almost any machine or OS, I
originally obtained it for use on my main server, which runs Linux. For this
reason, the speech server was developed and tested under Linux. The server
was originally developed using libraries and part of the code base of my BBS
package, so these are included as part of the published source. I am working on
a more portable public source implementation that should be more easily and
widely compatible to non-Linux systems as well. I must go now, as I am being
paged...

Code for the Synthesizer

David Sugar Best known for WorldVU, a public BBS system for Linux, he is
currently employed as director of software engineering for Fortran Corp. and
uses Linux for commercial telephony development. He maintains his own
Internet server under Linux.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/033/0179s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/033/toc033.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Booting Linux from EPROM

Dave Bennett

Issue #33, January 1997

This is a quick look at making Linux bootable from EPROM on a 486 single
board computer.

This article describes one way to run Linux in an embedded system with no
hard disk. The application described is an Operator Interface in a monitor and
display system developed by Boeing Flight Test. The airborne environment
requires something fairly rugged which can withstand common power
interruptions. To meet these requirements we decided to build the operator
interface without a hard disk.

Overview

The basic concept includes booting from a solid state disk (SSD) in Erasable
Programmable Read-Only Memory (EPROM), copying a root file system from
EPROM to a RAM disk, loading the operator interface software from a host and
executing it. This article focuses on the details of how the system works, and on
development techniques used.

The hardware selected is a VME-based Single Board Computer (SBC) 80486 with
16M of RAM, a PC104 SSD cable of holding a 4Meg EPROM, and some other
PC104 boards. This SBC has built in BIOS support for using the SSD. The system
uses a programmable keyboard and a standard VGA display.

System Operation

For booting, two options were considered:

• booting DOS, then running the loadlin program (to load Linux) from
autoexec.bat

• installing LILO and booting Linux directly

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

The advantage of the second option would be a slightly shorter boot time.
However, we implemented the first option, because we wanted to use a
programmable keyboard—the software for programming the keyboard runs
under DOS.

A bit of kernel-hacking was needed to make the system work. The ramdisk.c
code was changed to load from any block device, not just a floppy (see Listing 1,
ramdisk.c). Also, a new block driver was written to read from the EPROM device
(see Listing 2, epromdsk.c).

When deciding how to implement the EPROM device driver, the first idea was to
create an image of a disk in the EPROM. This would provide a RAM disk of the
same size as the EPROM, 3.5MB in this case (the DOS portion of the SSD takes
1/2 MB). Instead, to allow a larger RAM disk, a compressed disk image is used.
The compression used is simple—any sectors which are identical are only
stored once. The primary advantage this gives is blank areas of the disk image
don't need to take up EPROM space. Listing 1 shows the SSD disk compression
used.

EPROM Disk Compression

In order to automatically run the operator interface application, a program was
written to replace getty. This program (dboot.c) will run login for a given user,
and set the stdin, stdout and stderr to the specified virtual console.

The boot sequence is:

• Power up and run memory tests
• load DOS which executes AUTOEXEC.BAT

◦ run the keyboard programming application
◦ run loadlin—this reads a linux kernel from the DOS disk & executes

it
• the linux kernel takes over
• load the RAM disk from the EPROM disk
• switch the root file system to the RAM disk
• init will read inittab which executes dboot instead of getty
• the operator interface application is started

Development

After the fun part—figuring how to make an EPROM driver and how to boot the
system—the more mundane task of putting together the EPROM disk contents

https://secure2.linuxjournal.com/ljarchive/LJ/033/0243l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/033/0243l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/033/0243f1.jpg

had to be done. This was done using a development disk which was partitioned
as follows:

• /dev/hda1 - 80MB “full” Linux system
• /dev/hda2 - 6MB EPROM development
• /dev/hda3 - 20MB DOS partition
• LILO was used to allow booting of either Linux or DOS.

Programming EPROMs is a time-consuming task and to be avoided as much as
possible. As a result, most of the development is done using the disk.

The first phase of disk image development was identifying the required and the
desired items. The first step was to come up with a minimal system and then
add the items required for the operator interface. Not being a Unix expert,
coming up with the minimal system ended up being something of a trial and
error process. I started with what I thought was needed, then tried running it.
When an error occurred because of a missing program or library, that file was
added. This process went on until the system ran happily.

The bulk of this was done by copying files from the “full” Linux partition to the
6MB partition, booting DOS and using the loadlin line:

loadlin zimage root=/dev/hda2 ro

Once the system was fairly stable, the 6MB partition was loaded into the RAM
disk. This is very similar to how the RAM disk is loaded from EPROM, but
development went faster since EPROMs weren't being programmed. To test the
system without programming EPROMs, the system booted DOS and ran loadlin
with the line:

loadlin zimage root=/dev/hda2 ramdisk=6144 ro

Because of the modification to ramdisk.c, the /dev/hda2 disk image is loaded
into the RAM disk, then the root file system is switched to the RAM disk. The
process of refining the disk image continues until everything is “perfect”.

Programming EPROMs

The process of programming (“burning”) the EPROMs starts out by archiving the
small disk drive with tar, then extracting the files onto a clean (zeroed out) file
system. By putting the file system onto a clean disk, all unused sectors are
zeroed out, and the disk compression works (Listing 1).

To tar the disk image, the “full ”Linux partition was booted, and the 6MB
partition mounted. By doing this, the proc file system is not included in the tar.
The following commands can be used:

mount -t ext2 /dev/hda2 /mnt
cd /mnt
tar -cpf /tmp/eprom.tar *

To create the (uncompressed) disk image, I used a different machine with a
6MB RAM disk and the following commands:

dd if=/dev/zero of=/dev/ram count=12288
mke2fs /dev/ram 6144
mount -t ext2 /dev/ram /mnt
cd /mnt
tar -xpf ~/eprom.tar .
dd if=/dev/ram of=~/eprom.dsk count=12288

This creates a file (eprom.dsk) which is a sector-by-sector image of the disk. The
data to be programmed into the EPROMs is the compressed image. This is
done with a program (med.c) which reads the disk image (eprom.dsk), runs the
disk compression, and outputs a binary file (eprom.img) which will be
programmed into the EPROMs.

med ~/eprom.dsk ~/eprom.img

The EPROM image is then moved to an EPROM programmer and the images
are burned.

DOS boot SSD

Fortunately the SBC came with SSD utilities to help build the disk image. The
DOS SSD disk has a bare minimum of files in it: the DOS boot files,
command.com, autoexec.bat, the keyboard loading program, loadlin and
zImage.

Listing 3

Listing 4

Conclusion

The development of what goes on the disk is a large part of the job, and
methods need to be developed to minimize this effort. Using the EPROM disk is
working well in our application.

Dave Bennett “works with computers” at Boeing in the commercial Flight Test
group. When not at work, he enjoys the company of his significant other, two
cats, a bunch of fish and millions of yeasties. Dave enjoys building things, a few

https://secure2.linuxjournal.com/ljarchive/LJ/033/0243l3.html
https://secure2.linuxjournal.com/ljarchive/LJ/033/0243l4.html

of which are featured on the web page www.halcyon.com/bennett. Dave can be
reached at bennett@halcyon.com or dave.bennett@boeing.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/033/toc033.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Using Linux with Programmable Logic Controllers

J.P.G. Quintana

Issue #33, January 1997

After a short introduction to programmable logic controllers (PLCs), see how
Linux and the Web can enhance monitoring and control of mechanical systems
using test machines designed by the DuPont-Northwestern-Dow Collaborative
Access Team.

When solving control system problems for the “real world”, a toolkit approach
to problem-solving often leads to quicker and more robust solutions. This is
one of the reasons we are using Linux on commercial Intel-based machines at
the DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) at the
Advanced Photon Source (APS). The APS (see http://www.aps.anl.gov/) is one of
three third generation synchrotron X-ray sources that will provide the world's
most brilliant source of X-rays for scientific research. The DND-CAT (see http://
tomato.dnd.aps.anl.gov/DND/) is a collaboration formed by the DuPont
Company, Northwestern University, and the Dow Chemical Company to build
and operate scientific equipment at the APS to study industrial and
academically interesting problems in chemistry, biology, materials science and
physics. Linux (like all Unix systems) is designed around the toolkit paradigm.
The tools which run under Linux provide an excellent framework for building
user interfaces (e.g., Netscape, Java, Tcl/Tk, expect, World Wide Web daemons),
running calculations (e.g., C, C++, FORTRAN, Perl, pvm) and interacting with
external devices (GREAT access to serial devices, cards in the backplane, and of
course, TCP/IP).

However, while there are efforts to equip Linux with real-time capabilities, it is
not a “real-time” operating system. In addition, using commercial personal
computers for control applications is a mixed blessing at best. While the
systems are powerful, readily available and inexpensive, they also come with a
limited number of slots on the backplane and the machine usually must be
physically close to the process being controlled or monitored. This can be
problematic in situations where the process takes place in a harsh environment
that might cause the hardware to fail (e.g., high radiation areas, high vibration,

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

etc.). These are important factors in the design of an entire control system.
However, they are only problems if we expect Linux to provide the entire
solution to the control problem rather than one tool in a toolkit approach.

At the DND-CAT, we have been designing systems that use programmable logic
controllers in conjunction with Linux PCs to provide low cost automation and
control systems for scientific experimental equipment.

Programmable Logic Controllers

Programmable logic controllers (PLCs) are the unsung heros of the modern
industrial revolution. Long before IBM and Apple were churning out computers
for the masses, factories were being automated with computerized controllers
designed to interface with the “real world” (i.e., relays, motors, temperatures,
DC and AC signals, etc.). These controllers are manufactured by many
companies like Modicon, Allen-Bradley, Square D and others. In his booklet,
History of the PLC, Dick Morley, the original inventor of the PLC, notes that the
first PLC was developed at a consulting company, Bedford Associates, back in
1968. At this time, Bedford Associates was designing computer-controlled
machine tools as well as peripherals for the computer industry. The PLC was
originally designed to eliminate a problem in control. Before the digital
computer, logic functions were implemented in relay racks where a single relay
would correspond to a bit. However, relays tend to be unreliable in the long
term and the “software” was hard programmed via wiring.

System reliability could be improved by replacing the relays with solid state
devices. This had the advantage that the system was maintainable by
electricians, technicians and control engineers. However, the “software” was
still in the hard wiring of the system and difficult to change. The alternative at
this time was using one of the minicomputers being developed, like the PDP-8
from Digital Equipment. While more complex control functions could be
implemented, this also increased the system complexity and made it difficult to
maintain for people on the factory floor.

Morley designed the first PLC to replace relay racks with a specialized real-time
controller that would survive industrial environments. This meant that it had to
survive tests, such as being dropped, zapped with a tesla coil and banged with a
rubber mallet. Designed for continuous operation, it had no on/off switch. The
real-time capabilities were—and for the most part still are—programmed into
the unit using ladder logic.

Ladder logic is a rule-based language; an example is given in Figure 1. The line
on the left side of the diagram shows a “power rail” with the “ground” for this
rail on the right hand side (not shown). The rules for the language are coded by
completing “circuits” in ladder rungs from left to right. In the diagrams, “||”

corresponds to switch contacts, and “()” corresponds to relay coils. Slanted bars
through the contacts and coils denote the complement. The “X” switch contacts
are mapped to real binary input points, the “Y” relay coil contacts are mapped
to output points, and the “C” contacts/coils are software points used for
intermediate operations. In the example, closing X0 and C0 or opening X0 and
C0 will energize the C10 coil thereby closing the C10 contact. The C10 contact
activates Y0 and turns off Y1.

While this graphical style of programming may be strange for someone
accustomed to programming in C or FORTRAN, ladder logic makes it easy for
non-programmers to write useful applications. Most PLCs have a large set of
functions, including timers, counters, math operations, bit shifters, etc. They
have a wide variety of input and output devices, including binary and analog
inputs and outputs, motor and temperature controllers, relay outputs,
magnetic tachometer pickups, etc. The number of input and output points
depends on the type and size of the PLC, but can range from less than 10 for a
micro-PLC to over a thousand for one of the higher-end PLCs. The PLC market
has grown over the years and has been affected by the computer revolution.
Today, there are a number of high quality, inexpensive PLCs on the market.
PLCs from the same vendor can often be networked together. In some cases, a
lower-end PLC can be built for less than $500.00.

PLCs and Linux

In our applications, we have used Linux computers as interfaces between the
PLC and the outside world. Our main purpose for this was to use tools like Tcl/
Tk and the World Wide Web (WWW) through the Common Gateway Interface
(CGI) to control processes in the PLC. The software used to program our PLCs is
Microsoft Windows-based. Consequently, by having Linux and Windows
partitions on the same hard disk, we can toggle back and forth between MS
Windows, where we program the PLCs, and Linux, where we program and use
the operator interface.

The real-time operating system inside PLCs is relatively simple compared to a
complex system such as Linux. Consequently, those portions of the control
process which require extremely high reliability can be programmed into the
PLC, leaving Linux available for other tasks.

We are using the PLC Direct line of PLCs (see http://www.plcdirect.com/) for our
applications. In order to prove the reliability of the Linux and PLC Direct
combination, we collaborated with the UNICAT (A University-National Lab-
Industry Collaborative Access Team; see http://www.uni.aps.anl.gov/) to set up
a test system using a Linux-based web server connected to a PLC Direct 405
PLC. Communication with the PLC is through a multidrop, packet-based,
master/slave protocol that runs over a serial link. Using the PLC Direct

documentation, we implemented this protocol using Don Libes' expect
program over the Linux serial ports, making the Linux system the master. This
gave us the capability to “peek” and “poke” into the PLC memory map. CGI
scripts call the expect program to provide access to the Web.

Photo of the DND-CAT/UNI-CAT Linux/PLC Test Stand

Net surfers were allowed to close output points and read input points on the
PLC through the WWW interface between March 1995 and July 1996. A photo of
that test stand is shown in Figure 2. The PLC monitored digital inputs from the 5
Love controllers, which measured the temperature in the PLC CPU and closed a
contact if the temperature went above a preset value.

In addition to the demonstration, we have used the Linux/PLC combination in
three project areas: a simple shutter for a synchrotron X-ray beamline, a
personnel safety system for an analytical X-ray machine, and an equipment
protection system using a high intensity X-ray beamline at the Advanced
Photon Source.

Simple Ladder Logic Diagram

Our simplest application with the PLC and Linux involved interfacing a
commercial X-ray beam shutter to our Linux data collection computer. The
hardware for the X-ray shutter is controlled by two relay-actuated solenoids.
When we program the PLC, we allocate two ranges of control relays to act as an
interface between the PLC and Linux. The program in Figure 1 demonstrates
this. The Linux program that would set C0. X0 is attached to a hardware switch
and provides an external input to the system. The X0 and C0 combination
simulate a three way switch, and Y0 and Y1 actually operate the relays on the
shutter. A program on the Linux side can read C10 to monitor the shutter
status. With the interface between the PLC and Linux defined through control
relays, the actual control process is divided up between the two different
machines.

Our second project used the PLC as a state machine to monitor a radiation
enclosure for an X-ray generator and X-ray tube. Since this was a safety device,
we enabled the PLC's password function to lock the program into the PLC CPU.
If for some reason we forget the password, the CPU must be sent back to the
manufacturer for reset. The PLC monitors twelve door contact switches,
switches from an operator panel, X-ray shutter positions, water flow interlocks
for the X-ray tube, as well as providing a buzzer and a fail safe lamp to notify
the operator the X-rays and shutter are on. The PLC also provides enable
signals for the X-ray generator and the X-ray shutter.

While the main purpose of the PLC is to protect the operator, the PLC doesn't
have a very good way of notifying the operator of what has failed should the X-
ray interlock trip. This is where Linux comes in. Using CGI scripts, we wrote web
pages that allow the operator to query the PLC state using a browser. To
prevent unauthorized access to the equipment (only trained people can use
this equipment), we provided a watchdog signal between Linux and the PLC. An
authorized user logs into the Linux system and runs a protected daemon which
starts the watchdog timer in the PLC. The Linux daemon must continuously
restart the watchdog to keep the X-ray system enabled, and the daemon
disables the system when the user logs out. Linux keeps track of all of the
accesses to the system and sends e-mail to the X-ray generator custodian
whenever an access occurs. Thus, the Linux system acts as the data collection
computer for the instruments attached to the X-ray generator.

Our last project is an equipment protection system for an X-ray synchrotron
beamline at the Advanced Photon Source. In this case, the PLC is monitoring
over 70 input points from water flow meters, vacuum system outputs, and
switches from vacuum valves. Based on the status of these systems, the PLC
sends an enable or disable signal to the APS which permits them to deliver the
high intensity X-ray beam to our equipment. Serious equipment damage can
occur if the APS delivers beam when the systems are not ready. In this case, we
use Linux as a data logger as well as an operator interface. Every few minutes,
Linux polls the PLC to log system status.

The PLC itself keeps a log of significant events in nonvolatile memory in the
event of power failures. In order to keep the PLC in sync with the Linux logs, we
use the Network Time Daemon on the Linux end and once a day reset the real-
time clock in the PLC. In addition to the PLC, Linux processes are monitoring
other devices, like vacuum gauges, through a multiport serial card. If a system
failure occurs, our scientists and engineers can either log into the Linux system
and run expect scripts to diagnose the problem or use a browser and interact
with the Linux/PLC combo via the Web. At this point, the operator has complete
control over enabling and disabling processes in the PLC.

In this application, the interface with the World Wide Web is extremely
important. Scientists travel to synchrotron sources from all over the world to
conduct experiments. When the facility is operational, it runs twenty four hours
a day. If our PLC were to shut the equipment down, it is important to be able to
diagnose the fault, and if possible, return the equipment to operational status
as quickly as possible. By using the World Wide Web, we provide our scientists
and engineers with diagnostic tools they can use from anywhere using
commonly available interface software. I personally have been able to monitor
system status in our PLCs at my desk at work, my apartment in Chicago and a
cyber-cafe in London.

In general, we have found combining programmable logic controllers with
Linux to be a cost effective and robust method for providing specialized control
systems at the DuPont-Northwestern-Dow Collaborative Access Team. As we
build our instrumentation, we continue to find new applications for this
combination. We have several more projects in the works, including using the
PLCs to construct intelligent controllers for specialized machines and using
Linux to interface with them. We also plan to implement the PLC Direct slave
protocol under Linux to allow the PLC to send data directly to Linux daemons,
so the PLC does not need to be polled.

Acknowledgements and Notices

I would like to thank Pete Jemian of the UNI-CAT for collaborating on the
prototype system and for the photo in Figure 2.

The DND-CAT Synchrotron Research Center is supported by the E.I. Du Pont de
Nemours & Co., The Dow Chemical Company, the State of Illinois through the
Department of Commerce,and the Board of Higher Education Grant IBHE HECA
NWU 96 and the National Science Foundation Grant DMR-9304725.

Reference to specific products does not constitute a commercial product
endorsement.

References

Libes, Don. Exploring Expect, (0'Reilly & Associates, Inc.) 1995.

Morley, R.History of the PLC, R. Morley Inc. Milford NH.

Quintana, J.P.G., and Jemian, P. Design Criteria for Beamline Protection Systems
at the Advanced Photon Source, Synchrotron Radiation Instrumentation
Conference 1995 (in press).

John Quintana (jpq@nwu.edu) is an assistant research professor in the
Department of Materials Science and Engineering at Northwestern University
and is working at the DND-CAT facility at the Advanced Photon Source. In his
little spare time, he enjoys aikido, kaledeioscopes, hiking with his wife and
petting puppies at the animal shelter. If you have any questions or comments,
he can be reached by email or by post at the DND-CAT, Building 432/A003, 9700
South Cass Avenue, Argonne, IL 60439, USA.

Archive Index Issue Table of Contents

 Advanced search

mailto:jpq@nwu.edu
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/033/toc033.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

 Advanced search

Disk Maintenance under Linux (Disk Recovery)

David A. Bandel

Issue #33, January 1997

The ins and outs of disk maintenance—what we all should know and DO.

Here's a hypothetical situation for you to think about. You're working on your
Linux box, calling up an application or data file, and Linux hesitates while
reading the hard disk. Then, scrolling up the screen (or console box), you see
something like this:

Seek error accessing /dev/hdb2 at block 52146,
 IDE reset (successful).

After some time spent chugging away accessing the drive, Linux continues. If
you're lucky, everything is still running along fine. If you're not, your program is
refusing to start, or your data file contains garbage.

Chances are, if you're using a hard disk drive that's a few years old, you will
begin to see errors when accessing the disk from time to time. At this point, the
best prognosis for your disk is that, given time, it'll get worse. So you need to
begin resuscitation efforts as soon as possible. Several disk manufacturers
have utilities that find and allocate these bad sectors on your hard disk.
Unfortunately, these utilities also destroy the information on your disk, and are
normally run from DOS, not Linux.

Fortunately, Linux has some system utilities to help you when you are dealing
with its (now) native ext2 format. (Utilities are also available for minix. If you
need to repair other non-Linux file systems you should use their own native
sets of file system utilities.) While not as user-friendly as Norton Disk Doctor or
Microsoft ScanDisk, the Linux disk and file system utilities get the job done. In
this article, we'll look at a few of the tools to help us overcome the kind of
problem I described in the opening paragraph. Other hard disk manipulation
utilities can be found in /sbin and /usr/sbin, but they'll have to wait. For now,
let's get the hard disk working properly.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Before you dig in, if you're using one of the newer 2.0.x kernels with an IDE
drive, check to see if you have the proper bug fixes compiled into the kernel. If
you aren't sure which chipset you have in your computer or are unable to
ascertain for sure, it is safe to compile in the CMD640, RZ1000 and Intel 82371
options. These options are found under Floppy, ID and other block devices in
your make config. This could save your data in the future. These bug fixes may
be all you need, but further checks on your hard drive won't hurt.

I hate cliches, although I'm frequently accused of (ab)using them. If it really
went without saying that we always do system backups, my income might be
somewhat lower than it is. For most people, it's just not true. So, if you've
neglected the chore for a while, just let me say that now would be a good time
to do that backup. Some of the work I'll be telling you how to do could
inadvertently damage or destroy your file system or some of your important
files—so be careful and don't say I didn't warn you.

Preparations

Now that I've gotten the requisite legal protection warnings out up front, let's
begin. The safest way to start is with a fairly mundane check of the file system.
On my system—a combination Red Hat (I like the SYSVinit style bootup),
Slackware, Internet tarball concoction—I have fsck, a front-end program that
reads the type of file system on a device (from /etc/fstab), then invokes the
appropriate fsck.filesystemtype checker—in my case, fsck.ext2. You may have
e2fsck on your system instead of, or in addition to, fsck.ext2. Don't worry,
they're the same file. One may be a soft link to the other, but it's better to make
that a hard link.

Before starting, let's prepare our systems for the kind of work we're going to be
doing. Whenever I perform low-level maintenance on a system, I find it prudent
to ensure I am disconnected from the network. Normally this means dropping
to single-user mode. You may opt to do some of these tests from init level 2
(with no network connections), but you'll want to ensure that you don't have
too many processes running that want to write to the disk, and none that run
from the partition you need to work on. Single-user mode was made for this. A
simple telinit 1 will get us to single-user mode.

If you're not checking the root file system, unmount the file system you're going
to work on before you begin. If you forget, you'll get a prompt from fsck telling
you the file system is mounted and asking if you want to continue anyway. Say
“No”--running low-level system diagnostics, particularly those that alter the file
system by writing directly to the disk as fsck does, with the disk mounted, is a
very bad idea. Obviously, we can't unmount the root file system. We should be
able to remount it as read-only, but a bug in mount doesn't always allow this
option. If you need to check the root file system, you can reboot into single-

user mode with the root partition mounted read-only by issuing the -b switch at
the LILO prompt. The -b switch will be passed through LILO to init and will
cause an emergency boot that does not run any of the startup scripts. If you
have always wondered why you would want to create several partitions—for
example, for /usr and /home--and restrict the size and scope of the root
partition, now you know.

fsck—The File System Checker

Invoking fsck from the command line on any given partition will probably not
result in a check being run, because you have not reached the predetermined
maximum mount count; therefore, the system believes the file system is clean
and not in need of checking. To force the check, invoke fsck with -f.

At this point, one of two things will happen: fsck will begin to run correctly and
check your disk partition (possibly hesitating at the bad spots on the disk and
issuing appropriate error messages before continuing) or it will terminate
without running, leaving error messages behind. If fsck does not run, you'll
have to give the program additional information as indicated in the error
messages. Probably the most common information you'll need to pass to
e2fsck is the address of the alternate superblock or the block size so that e2fsck
can calculate where an alternate superblock is located. The -b switch will tell
e2fsck to use the alternate superblock, but we'll have to tell e2fsck where to
find one. On ext2 file systems, superblocks are normally located at 8193, 16385
and higher multiples of 8192+1 (see dumpe2fs explanation below). As an
alternative, we can pass e2fsck the block size with the -B switch (once we have
that information) to allow e2fsck to calculate alternate superblock locations.
Later I'll tell you where to get the block size value if you ever need it.

At this point, it's worth mentioning two other mutually exclusive switches
available to fsck and e2fsck. The first is the -n switch, which tells fsck to answer
no to all queries, and will leave the file system in its original condition making
no repairs. The second is the -y switch, which automatically corrects any errors
it finds. Generally, to speed things up, you may want to run fsck with the -y
switch. So, why don't we just use this option all the time? I strongly recommend
against this course of action, if you suspect problems with the file system. While
fsck will usually not encounter problems, typing fsck -y and then taking a coffee
break, leaving the machine to take care of itself, is not particularly prudent. If, in
the interests of speed, you use the automatic answer yes switch to do routine
checks, be sure to list your lost+found directories from time to time. Besides,
you'll really want to note the block or inode numbers that appear while fsck
runs, so that you can check them later to see if they are allocated to files.

The other available options for fsck and e2fsck can be found in the man pages. I
consider the fsck and e2fsck man pages fairly well written, as is appropriate
considering the importance of these utilities to your file system's health.

Some Common fsck Messages

You may encounter messages asking if you want fsck to correct an error.
Answering no will normally terminate the program so that you may fix the
problem and rerun fsck. However, most error messages you're likely to
encounter are fairly routine, and you may safely answer yes to them. If you see
a message such as inode 1234 unattached, it means the file pointed to by inode
(information node) 1234 has, for one reason or another, lost its filename. This
can occur for several reasons, including a power failure or a computer reset
without a proper disk sync.

Other common errors include zero time inodes, which are also due to the disk
not being properly synced before shutdown. If you see these errors frequently
and you've been shutting down your system correctly, you may have any
number of other problems. In this case, you could begin by checking your
power and data connections and your power supply for fluctuations or passing
too much noise. Finally, check your hard disk parameters. I must caution you
that altering the default hard disk parameters could do serious damage to your
file system or corrupt your files—be careful.

The lost+found Directories

One lost+found directory should be located in the root partition of each file
system. If you have, for example, two mounted file systems, /usr and /home,
you should have three lost+found directories. These directories will contain
files whose inodes have become disconnected from their file names. The files in
these directories will have the form ./#nnnn, where nnnn is the inode number
used as the file name. You may be able to determine what the file is by
inspecting it using cat. If cat returns what appears to be garbage, you probably
have a binary file. In this case, you can do a chmod +x #nnnn, and then run the
file. These procedures should give you enough information to learn what the
file is. If the file is important, it can be renamed and moved to its original
location; otherwise, it can be deleted.

Down in the Dumps

The next utility we'll look at is dumpe2fs. To invoke this utility, type dumpe2fs
device, to get the block group information for a particular device. Actually,
you will get more information than you're likely to use, but if you understand
the physical file system structure, the output will be comprehensible to you. A
sample output is shown in Listing 1.

Output from dumpe2fs

We really need only the first 22 lines of output. (The very first line with the
version number is not part of the output table.) Most of these lines are fairly
self-explanatory; however, one or two could use further explanation. The first
line tells us the files system's magic number. This number is not random—it is
always 0xEF53 for the ext2 file systems. The 0x prefix identifies this number as
hexadecimal. The EF53 presumably means Extended Filesystem (EF) version
and mod number 53. However, I am unclear about the background of the 53.
(Original ext2fs versions had 51 as the final digits, and are incompatible with
the current version.) The second line indicates whether a file system is clean or
unclean. A file system that has been properly synced and unmounted will be
labeled clean. A file system, which is currently mounted read-write or has not
been properly synced prior to shutdown (such as with a sudden power failure
or computer hard reset), will be labeled not clean. A not clean indication will
trigger an automatic fsck on normal system boot.

Another important line for us is the block count (we'll need this later) that tells
us how many blocks we have on the partition. We'll use this number when
necessary with e2fsck and badblocks. However, I already know how many
blocks I have on the partition; I see it every time I invoke df to check my hard
drive disk usage. (If this were a game show, the raspberry would have
sounded.) Check the output of df against dumpe2fs—it's not the same. The
block count in dumpe2fs is the one we need. The number df gives us is
adjusted to show us only the number of 1024k blocks we can actually access in
one form or another. Superblocks, for example, aren't counted. Have you also
noticed that the “used” and “available” numbers don't add up to the number of
1024k blocks? This discrepancy occurs because, by default, the system has
reserved approximately five percent of these blocks. This percentage can be
changed, as can many other parameters listed in the first 22 lines of the
dumpe2fs readout; but again, unless you know what you are doing, I strongly
recommend against it.

By the way, the information you are reading in the dumpe2fs is a translation
into English of the partition superblock information listed in block one. Copies
of the superblock are also maintained at each group boundary for backup
purposes. The Blocks per group value tells us the offset for each superblock.
The first begins at one, the succeeding are located at multiples of the Blocks

per group value plus 1.

While we don't really need to use more than the first 22 lines of information, a
quick look at the rest of the listing could be useful. The information is grouped
by blocks and reflects how your disk is organized to store data. The superblocks
are not specifically mentioned, but they are the first two blocks that are

https://secure2.linuxjournal.com/ljarchive/LJ/033/0193l1.html

apparently missing from the beginning of each group. The block bitmap is a
simple map showing the usage of the blocks in a group. This map contains a
one or zero, corresponding to the used or empty blocks, respectively, in the
group. The inode (information node) bitmap is similar to the block bitmaps, but
corresponds to inodes in the group. The inode table is the list of inodes. The
next line is the number of free blocks. Note that, while some groups have no
free blocks, they all have free inodes. These inodes will not be used—they are
extras. Some files use more than one block to store information, but need only
one inode to reference the file, which explains the unused inodes.

badblocks

Now that we have the information we need (finally), we can run badblocks. This
utility does a surface scan for defects and is invoked by typing, as a minimum:

badblocks /dev/

The device is the one we need to check (hda1, sda1, etc.) and the blocks-count
is the value we noted after running dumpe2fs (above).

Four options are available with badblocks. The first option is the -b with the
block size as its argument. This option is only needed if fsck will not run or is
confused about the block size. The second option -o, which has a filename
argument, will save to a file the block numbers badblocks considers bad to a
file. If this option is not specified, badblocks will send all output to the screen
(stdout). The third option is -v for verbose (self- explanatory). The final option is
-w, which will destroy all the data on your disk by writing new data to every
block and verifying the write. (Once again, you've been warned.)

Your best bet here is to run badblocks with the -o filename option. As bad
blocks are encountered, they will be written to the file as a number, one to a
line. This will be very helpful later on. In order to run badblocks in this way, the
file system you are writing the file to must be mounted read-write. As root—
and you should be root to do this maintenance—you can switch to your home
directory, which should be located somewhere in the root partition. badblocks
will save the file in the current directory unless you qualify the filename with a
full pathname. If you need to mount the root partition read-write to write the
file, simply type: mount -n -o remount,rw /.

Once you have your list of bad block numbers, you'll want to check these blocks
to see if they are in use, and if not, set them as in use. If a block is already
marked in use, we may want to clear the block (since the data in it might be
corrupted), and reset it as allocated. Print the list of bad blocks—you'll need it
later.

Enter debugfs

The final utility we will discuss is probably the most powerful and dangerous.
With debugfs, you can modify the disk with direct disk writes. Since this utility is
so powerful, you will normally want to invoke it as read-only until you are ready
to actually make changes and write them to the disk. To invoke debugfs in read-
only mode, do not use any switches. To open in read-write mode, add the -w
switch. You may also want to include in the command line the device you want
to work on, as in /dev/hda1 or /dev/sda1, etc. Once it is invoked, you should see
a debugfs prompt.

We'll be looking at only a limited set of commands for the purposes of this
article. I would refer you to the man pages, but the page for debugfs located on
my system is out of date and does not accurately reflect debugfs' commands.
To get a list, if not an explanation, at the debugfs prompt type ?, lr or
list_requests.

The first command you can try is params to show the mode (read-only or read-
write), and the current file system. If you run this command without opening a
file system, it will almost certainly dump core and exit.

Two other commands, open and close, may be of interest if you are checking
more than one file system. Close takes no argument, and appropriately
enough, it closes the file system that is currently open. Open takes the device
name as an argument.

If you wish to see disk statistics from the superblock, the command stats will
display the information by group.

Now that you've had a chance to look at a few of debugfs' functions, let's get to
work fixing our hard disk. From the printed list of bad blocks, we need to see
which blocks are in use and which files are using them. For this we'll use testb

with each block number as an argument. If the test says the block is not in use,
we know we have'nt lost any data here yet.

If the block is marked as in use, you'll want to find out which file is using this
block. We can find the inode by using:

icheck

which will return the inode that points to the block. From here, we can use

ncheck

to get the name of the file corresponding to the inode. Now we finally have
something we can work with. You may want to try to save the file, but if the

block really is bad, you're probably better off reinstalling this file from a backup
disk. To free the block, you can use one of several commands; the one I
recommend is:

cleari

This will deallocate the inode and its corresponding blocks. Remember, you'll
have to be in read-write mode to do this. Note that these commands are
irrevocable in read-write mode.

Once the bad block has been deallocated, you can use:

setb

to permanently allocate the block, removing the inode that points to it from the
pool of free inodes.

That's it. Once the appropriate changes have been made to set the blocks, you
can quit debugfs and reboot. You should not see more problems unless you
missed a block (or have grown more bad blocks).

Summary

Good disk maintenance requires periodic disk checks. Your best tool is fsck,
and should be run at least monthly. Default checks will normally be run after 20
system reboots, but if your system stays up for weeks at a time as mine often
does, you'll want to force a check from time to time. Your best bet is
performing routine system backups and checking your lost+found directories
from time to time. The dumpe2fs utility will provide important information
regarding hard disk operating parameters found in the superblock, and
badblocks will perform surface checking. Finally, surgical procedures to remove
areas grown bad on the disk can be accomplished using debugfs.

David Bandel is a Computer Network Consultant specializing in Linux, but he
begrudgingly works with Windows and those “real” Unix boxes like DEC 5000s
and Suns. When he's not working, he can be found hacking his own system or
enjoying the view of Seattle from 2,500 feet up in an airplane. He welcomes
your comments, criticisms, witticisms, and will be happy to further obfuscate
the issue. You may reach him via e-mail at dbandel@ix.netcom.com or snail
mail c/o Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/033/toc033.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Satellite Tracking with Linux

Kenneth E. Harker

Issue #33, January 1997

Looking for something fun to do with your Linux box? One of the most
impressive applications available for Linux is SatTrack 3.1 for Unix.

Looking for something fun to do with your Linux box? One of the most
impressive applications I've seen available for Linux is SatTrack 3.1 for Unix by
Manfred Bester. SatTrack is a very powerful tool for satellite tracking and orbit
prediction. It can tell you when a satellite, the Mir Space Station, or a space
shuttle will be overhead, where they are at any time and when you might be
able to see them. It can even control some external tracking hardware, such as
antenna rotors or telescopes. The program can run from the console or a
terminal window, or if launched inside an xterm, it can bring up a world map
showing the current position of any satellite or group of satellites. It can do all
this, and best of all, SatTrack 3.1 is free for private, non-commercial use.

Figure 1. SatTrack v3.1 Menu

As an amateur radio operator, I first became interested in using SatTrack to
track the many amateur radio satellite in low-earth orbit. These satellites
receive an amateur radio signal on one frequency, amplify it, and retransmit it
on another frequency. Two stations on opposite sides of a continent or an
ocean can communicate through one of these satellites using radios that
ordinarily wouldn't be able to reach each other. Since most of these satellites
are in low earth orbit, however, they pass overhead infrequently, and then only
for several minutes at a time. Knowing when they will appear where is
imperative to successful communication. To solve this tracking problem, it's
Linux and SatTrack to the rescue!

Figure 2. SatTrack v3.1 Multi-Satellite Line Display

SatTrack was designed to compile and run on most Unix operating systems,
and it runs quite nicely under Linux. One really nice feature of the program is

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/033/0212f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/033/0212f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/033/0212f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/033/0212f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/033/0212f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/033/0212f2.jpg

that it can operate from a terminal window, such as a VT100 terminal, or from a
Linux virtual console, if you can't or don't want to use X. On the other hand, if
you do run X, you can pull up a full-color world map that will show you where
any satellite or group of satellites is at the moment, where the sun is, where the
gray line separating the sunlit side of the planet from the dark side of the
planet is, and a graphical projection the path of the next several orbits of a
satellite. Tools that come with SatTrack can automate the process of
downloading fresh Keplerian two-line elements—the files that describe a
satellite's orbit—directly from the Air Force Institute of Technology's FTP server.

Figure 3. SatTrack v3.1 Graphic Tracking Display

SatTrack is widely used in the space community. According to the program's
home page:

Users of SatTrack V3.1 include NASA's Jet Propulsion
Laboratory (JPL), Johnson Space Center (JSC), Goddard
Space Flight Center (GSFC) and Marshall Space Flight
Center (MSFC), the European Space Agency (ESA), the
German Aerospace Research Establishment (DLR), the
National Aerospace Laboratory (NLR) of The
Netherlands, the Los Alamos National Laboratory
(LANL), the Amundsen-Scott South Pole Station, a large
number of universities and other institutions, as well
as thousands of private users all over the world.

You can find more information about SatTrack, including its copyright and
licensing information and the latest version of the SatTrack 3.1 distribution at
http://www.primenet.com/~bester/sattrack.html.

Compiling SatTrack in a Linux system is fairly straightforward. Instructions on
how to compile the program are included in the file SatTrack/src/
README_MAKE, and I won't repeat all of them here. The most important
options to choose, though, are in SatTrack/src/Makefile and SatTrack/src/
include/sattrack.h. (These will make sense if you look at the files in question.) In
the Makefile, the machine type I chose is (yes, I actually do have a 486)

i486 (i486 with Linux)
#
CPU = i486/Linux
CC_CMACH = -O2 -m486
CC_LMACH =
CC = gcc

The user compile-time options I chose were:

CC_CUSR = -DREVERSEVIDEO -DSUNTRANSITS
-DXWINDOW

I used the following options for compiling and linking:

https://secure2.linuxjournal.com/ljarchive/LJ/033/0212f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/033/0212f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/033/0212f3.jpg

X11 = /usr/include/X11
LX11 = -L/usr/X11R6/lib -lX11 -lXt
-lICE -lSM
X11R6

In SatTrack/src/include/sattrack.h, the only changes I made were to define the
home directory:

#define SATDIR "/usr/local/bin/X11" /* directory where SatTrack */

and to change the print command (you might choose to use nenscript or some
other ascii to postscript utility):

#define PRINTCMD "a2ps"
#define PRINTOPT "-nL -nu -c"

After these changes, SatTrack should compile successfully. One final thing to
check after compiling is the write privileges on the SatTrack/pred/ directory; if
you install SatTrack in a common bin directory, you might want to make that
directory world writable or SatTrack may not be able to write an orbit
prediction to a file (or print it). For simplicity in calling the program, I've defined
a choice in one of my pull-down fvwm menus as follows:

 Exec "SatTrack" exec
/usr/bin/X11/color-xterm -sb -sl 500 -j
-ls -fn 7x14 -geometry 132x26 -T 'SatTrack
for Unix 3.1' -n 'SatTrack' -e
/usr/local/bin/X11/SatTrack/run/sattrack &

Using SatTrack is straightforward. After telling the program your location and
the satellite you're interested in, you are presented with a list of options. You
can compute an orbit projection over several days. SatTrack will succinctly
describe every pass over your location including times and durations of each
pass, the peak elevation the satellite will reach, and whether it will be visible.
Another option is to display the current position of the satellite. You can display
one satellite at a time or a whole group of satellites (such as all the amateur
radio satellites). SatTrack will tell you which satellites are currently over your
horizon and how long it will be until satellites enter or leave your field of view.
When appropriate, SatTrack can even tell you the radio frequency uplink and/or
downlink of a satellite, and dynamically compensate for the Doppler shift! More
advanced users can integrate SatTrack with antenna or telescope pointing
hardware to track an object precisely as it passes overhead. SatTrack is on of
very few satellite tracking program commonly available for any operating
system that can show satellite visibility or actively control tracking hardware.

The following are SatTrack Stellite Icons

U.S. Space Shuttle Icon

Space Shuttle Icon

MIR Icon

International Space Station Icon

SatTrack is an absolute wonder for tracking satellites. With the help of SatTrack,
I've made my first two-way communication with another ham radio operator
over 1000 miles away using the Russian amateur radio satellite RS-15, and I
look forward to making many more. Those who are not ham radio operators
can find fun uses for SatTrack as well. Weather satellites, geological survey
satellites, and others are constantly sending image and telemetry data to the
earth. SatTrack can also tell you when satellites might be visible. Ever seen a
space shuttle fly overhead? The Mir Space Station? The Hubble Space
Telescope? With binoculars or a telescope, you might even see smaller
satellites, once SatTrack has told you where and when to look. Doing a
presentation on the Global Positioning System? Show your audience exactly
where the GPS satellites are in orbit. Need a compelling computer display for
that sci-fi epic you're producing for Film Studies 101? SatTrack can provide ever-
changing graphic disply windows.

Information about SatTrack

Information about SatTrack for Unix is available at http://www.primenet.com/
~bester/sattrack.html.

SatTrack 3.1 can be downloaded and used free for private, non-commercial
purposes, and the author, Manfred Bester, offers version 4.0 of SatTrack with
more options and a more graphical interface for commercial use.

Figure 5: SatTrack Orbit Prediction Short Form

Figure 6. SatTrack v4.0.1 GUI for Multi-Satellite Line Display

To get a taste of using SatTrack to predict times of visibility in a satellite's orbit,
check out http://ssl.berkeley.edu/isi_www/satpasses.html.

For more information about amateur radio, see the home page of the American
Radio Relay League: http://www.arrl.org/.

For information about Amateur Radio satellites in particular, see the home
page of AMSAT, the National Amateur Radio Satellite Corporation: http://
www.amsat.org/.

For information about the Shuttle Amateur Radio Experiment, see http://
www.nasa.gov/sarex/sarex.html.

Ken Harker, N1PVB has been a licensed radio amateur since October,1993, and
an avid Linux user since June 1995. He's currently a graduate student in the
Computer Sciences at the University of Texas at Austin.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/033/0212f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/033/0212f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/033/0212f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/033/0212f6.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/033/0212f6.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/033/0212f6.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/033/toc033.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Free SCO OpenServer Has Its Place

Evan Leibovitch

Issue #33, January 1997

Is Free SCO OpenServer free in response to Linux? Perhaps, in part, but the two
operating systems aren't really in competition with each other.

The SCO package looks surprisingly like a typical Linux distribution.

One CD-ROM, two boot floppies, and a leaflet tucked inside a compact package.
Primary support is on the Internet, using the Web, newsgroups, FTP and
specialized mailing lists (even Compuserve)—Lots of support for PC
peripherals. The media costs $19 (U.S. and Canada) plus shipping, but once you
have it, you can pass it around to everyone in turn and they can load it for free.

It isn't until you spot that familiar blue tree logo that you know this Isn't really
your typical Linux distribution; it's from the Santa Cruz Operation (SCO), the
company that's shipped more official Unix servers than anyone in the world.

What you have in your hands is one of the free copies of SCO OpenServer,
which SCO has been dishing out by the scores since its introduction at the SCO
Forum conference in mid-August 1996. This software is neither crippled nor
time-bombed, and it includes a full software development kit. Everyone who
installs the free version must register with SCO, but such registration is free of
charge, and is done on a web page. SCO says they're issuing free registrations
at the rate of about a thousand per week, more than two-thirds of them going
to people describing themselves as “technical home users”.

On a different web page heralding free OpenServer to the world (http://
www.sco.com/Products/freeopen.html), SCO boasts, this “bold move has far-
reaching implications for the future of Unix systems, and marks the stunning
public debut of SCO's stewardship of the Unix system.”

Lesser words have made the blood of many a Linux advocate boil, but the
“stewardship” is no joke. Since obtaining UnixWare and Unix source code from

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Novell last year, SCO owns the AT&T pedigree Unix. Like it or not, SCO is now
one of the central players who will determine the success of commercial Unix in
the years to come.

Who are the other players? Sun certainly, Hewlett-Packard on sunny days, IBM
SGI and DEC during full moons, and, of course, everyone in the Linux
community. Given the sheer number and enthusiasm of Linux users, Linux will
undoubtedly shape the future of the Unix market, even without the positive
effect of Lasermoon's work at Unix certification.

Indeed, the evolution of Linux has already had a major effect on the
commercial Unix marketplace. Commercial implementors, like Caldera, have
done an excellent job—in a relatively short period of time—of bringing Linux to
the attention of the IS community. But they certainly aren't at SCO's level yet—
nowhere near.

While the introduction of the free SCO can be traced in small part to the rise of
Linux, there are other factors about this release which are more important to
SCO. Squeezed by Microsoft on one side and Sun and additional RISC vendors
on the other, SCO must be seen as an active player—releasing a free version of
its bread-and-butter can certainly be seen as “active”.

Is free OpenServer an SCO assault on Linux? Only a little, since, for one thing,
there are strings attached to the software that SCO sells at many times the cost
of the most expensive Linux distribution. The main restrictions are a two-user-
only license (not upgradable to more users) and a prohibition on commercial
use.

In other words, you can set up a web server with the free OpenServer, but you
can't sell space on it. You can write and compile all the software you want, as
long as you don't try to sell the result. You can run it at home all you want (as
long as you don't have a home-based business), but if you want to use it legally
at work you'll have to buy the full-priced version.

SCO's goals with free OpenServer (soon to be followed, we are told, by a
similarly free version of UnixWare) can be summed up in three words:
exposure, excitement and respect.

The exposure part is easiest to explain. SCO wants as many people as possible
to get their hands on OpenServer, to get a taste of it, to evaluate it, to learn it
and to develop with it. They want SCO Unix in colleges and universities, so the
graduates of today will remember SCO when they make the purchasing
decisions of tomorrow. They want people installing OpenServer on their home

systems, to increase the level of SCO knowledge in the computer-using
populace.

In addition, SCO hopes analysts and other evaluators will take advantage of the
free OpenServer, to use it and, it is hoped, dispell some of the many rumours
floating around about it. From reading some posts on the Internet, one might
surmise the OpenServer of 1996 is merely a dressed-up version of Xenix on
steroids.

Now, don't get me wrong. I'm not personally that fond of OpenServer; when my
company sells SCO products, it's UnixWare we ship out the door, but SCO's
flagship line (that has out-sold UnixWare by a wide margin) doesn't deserve
much of the abuse I've seen heaped on it. The free offer is mainly designed to
let people see the product and separate fact from fiction.

One of the biggest misconceptions SCO needs to overcome is that OpenServer
is a difficult porting target for freeware. While earlier versions of SCO Unix were
notorious for their built-by-Microsoft compiler that was a porting nightmare,
newer releases have dumped that environment for a considerably more
developer-friendly SDK. It's a constant thorn in the side of SCO that so much
freeware takes so long to get ported to SCO, and much of it is not ported at all.

All these new copies of OpenServer in the hands of the people, and all these
development systems begging for freeware to be ported to them are what SCO
hopes will build some excitement around its product.

After all, SCO has historically been a company with good, but boring products.
SCO's skill is in blending different (and often hostile) technologies together.
However, SCO doesn't produce major inventions like Sun does, doesn't move
forward at the frantic pace of Linux, and doesn't do hardware like HP and other
Unix vendors.

Attention from the press or public is hard to come by for a product that sells
well, but contains very little whiz-bang. And as a result SCO doesn't get respect
from independent software vendors. While advances in PC hardware, such as
SMP and PCI and the Pentium Pro, allow SCO-based systems to scale well into
the turf of the RISC vendors, there are still many enterprise ISVs who ignore
SCO despite its huge market share. High-profile developers, like Computer
Associates, continue to treat SCO as an also-ran despite the fact that its
installed base of Unix servers is larger than anyone else's.

To a certain extent, this can be seen as a lack of respect, a feeling (justified in
my opinion) that SCO is the Rodney Dangerfield of the computer industry. By
spreading free copies of SCO around the Unix community, SCO hopes to gain

from the analysis by the independent software vendor communities the
respect it already has from its users.

Will free availability of SCO's operating system give it the whiz-bang it craves?
Hard to tell. Will any new-found respect come at the expense of Linux? Not
likely.

It's doubtful most current users of Linux are going to reformat their hard disks
to install free OpenServer. No one who runs an ISP, uses his Linux system for
writing commercial software or needs more than two users can use it legally for
those purposes. And the many people who use Unix at work and also run a
version at home for learning purposes are satisfied with Linux performance on
minimal hardware.

The free OpenServer (or any OpenServer, for that matter) doesn't come with
source code; this limits its value in educational and hobbyist settings, since you
can't really tinker with it. And, while the SCO-supported SkunkWare CD is chock-
full of freeware compiled for use with OpenServer, SCO still lags far behind
Linux when it comes to freeware availability.

Still, the other side has its advantages. SCO still supports far more commercial
applications than Linux, though the number of instances where such apps can
be run on free OpenServer (legally) will be quite few. Since SCO is installed on
so many corporate Unix servers, the free OpenServer will attract those who
perceive SCO familiarity as more marketable than Linux in the IS world. Until
Linux makes significant inroads into corporate servers and is supported by
major database ISVs, this perception will remain a powerful incentive for
people to install the free SCO rather than Linux.

So while the free SCO probably won't do much to shrink the existing installed
base, it is reasonable to ask what effect it will have on future growth of Linux.
Will anyone actually use free OpenServer to set up a personal web site, endure
all the cost and trouble of a full-time link and the necessary administration,
while being restricted from taking money to put up pages for others? Some of
the biggest growth areas for Linux, such as providing corporate Internet (and
Intranet) servers, are not threatened by the non-commercial license of free
SCO.

There are still some things SCO does better than Linux; official support for
major DBMS systems and very high-end hardware are but two. People needing
features like these are not considering Linux anyway, so little will be lost if or
when these people install Free SCO.

Are there those amongst the body of Linux users who are only using it until
“something better” comes along, or haven't installed any Unix at home because
they didn't want Linux, but would use SCO within its legal parameters? Some at
SCO seem to think so.

To me, these numbers are insignificant. The Internet is filled with stories of
people who began with Linux because it was all that was available at the cost,
then happily realized it performed beyond expectations. While there are few
hard facts, there is much anecdotal evidence that Linux will run faster than SCO
on a given hardware platform. Certainly Linux will run on older and cheaper
hardware better than SCO will. While good new hardware is inexpensive,
people getting their OS for free for home use probably won't want to spend
much on hardware upgrades.

Still, the biggest distinction to be made between the two products has to do
with their ultimate purposes. SCO intends its free Unix to boost sales of that
which is not free; regular retail for OpenServer ranges from $1,295 to more
than $13,000. SCO is even hoping the free two-user OpenServer will encourage
people to pay $795 to use the same product legally for commercial use (the
SDK is another $395).

Make no mistake about it—the primary targets of free SCO are Solaris and NT,
not Linux and other freeware operating systems. In those goals, it is in the
interest of all in the community who support Unix on Intel systems (which
includes Linux supporters) to encourage SCO's efforts. It is unreasonable to
consider these efforts as competition—Microsoft poses a far greater challenge
to Linux and SCO collectively than either pose to each other.

This is borne out by my own experiences. Authorized to sell both Caldera and
SCO products, my company has not yet come across a situation where both
Linux and SCO would be a good fit—either one or the other is best for any
particular job. Except for SCO's attempt at an Internet server (which is not
available under the free license), there's far less overlap than you may think.

For some, mostly those who already use SCO at work (or hope to), it makes
more sense to install the free version of SCO rather than Linux. As a tool to gain
attention, free SCO has already succeeded. Respect will be harder to obtain, but
it appears to be an attainable goal.

Still, by and large, there will be no major effect on the Linux community
because of one persistent difference between the two: Free SCO software is
designed ultimately to be just a stepping-stone to the high-priced spread. Linux
has no such path to follow, no restrictions to deter, no upgrade needed when

going from experimenter to implementor to commercial administrator. In this
regard, free SCO never really was competition to Linux.

Evan Leibovitch is Senior Analyst for Sound Software of Brampton, Ontario,
Canada. He's installed almost every kind of Unix available for Intel systems over
the past dozen years, and this year his company became Canada's first Caldera
Channel Partner. He can be reached at evan@telly.org.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/033/toc033.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Interview: Caldera's Bryan Sparks

Phil Hughes

Issue #33, January 1997

Where does Caldera go next? LJ Interviewed their President and CEO Bryan
Sparks to find out.

I had an opportunity to talk to Bryan Sparks at the Unix Expo trade show in
New York on October 9. In the past, Caldera has offered a different sort of
Linux to the market—one aimed at the “professional” end user. In other words,
people who want to use applications, and who just happen to be running a
Linux machine. But, with market penetration less than expected, Caldera has
made some changes.

On October 7, Caldera announced the release of their Solutions CD, which
includes software from Caldera and their Independent Vendor Partners (IVPs).
This release offers a set of applications for the Linux market while giving the
IVPs access to the global Linux market. The CD contains software that can be
released by getting an access key from Caldera. See the sidebar on page FIXME
for a list of the products available on this CD. Most of these products are not
specifically licensed for use only on Caldera Linux, which means that Caldera is
bringing some serious applications to the general Linux community.

Caldera's second announcement was the licensing of Novell's Cross-Platform
Services for use on Linux, allowing Caldera Linux platforms to work in a fully
integrated fashion with Novell Netware and IntranetWare systems. Other
licensees of this technology include Hewlett-Packard and The Santa Cruz
Operation (SCO).

Three New Products

Finally, in order to better address the needs of different market segments,
Caldera is introducing three Linux-based systems targeted at different market
segments. These new products are collectively called Caldera OpenLinux (COL)
and are based on the Linux 2.x kernel. The effort to produce this integrated set

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

of products started with LaserMoon who did the first work toward X/Open and
other certifications. Caldera is now working with Linux System Technologies of
Erlangen, Germany to complete the integration of Caldera and LaserMoon's
work with additional technologies.

Bryan and I talked about “their” technologies vs. the standard development
paths. Bryan assured me Caldera's intent was to make any necessary changes
for POSIX certification and Unix branding available to the Linux community as a
whole. He sees Caldera's products as part of the total product mix for the Linux
community and wants to make sure Caldera's work continues to be part of the
mainstream.

The low-end product, called COL Base, is much like the original Caldera
Network Desktop. The big changes are the elimination of a Netware (IPX) client
and a change in price from $99 to $59. It will also include the Caldera Solutions
CD. Bryan said he thinks this will be a better fit for the casual user—a Windows-
like desktop environment at a price more in line with other, plainer, Linux
distributions.

The second product, COL Workstation, will be COL Base plus Netscape
Navigator 3.0 Gold, Netware Client and Administration, a commercial, secure
web server and other technologies yet to be announced. This product will retail
for less than $300.

The final product is COL Server. It will include the features of COL Workstation
plus Cross Platform Services and GroupWise technologies licensed from Novell.
It will be fully capable of interacting as a secure server in an environment that
includes NetWare, Unix and Windows NT systems on an intranet or the
Internet. This product will offer an alternative to Microsoft's NT Server and will
retail for less than $1,500.

COL Base should be available by the time you read this article. The other
products will be introduced throughout 1997, with upgrade options available
for current Caldera users.

I also asked about support. Caldera includes their own Internet-based support
for all products, and will include 30-day installation support on the workstation
and server products.

Caldera has over 200 resellers under contract. In order to qualify for the
reseller program, the resellers must have Unix training, so that Caldera is
assured that they can support the products they sell. Bryan said many of these
resellers have been resellers of SCO Unix or UnixWare.

I asked Bryan if Caldera intended to continue with Unix branding of their
product. (To be able to use the Unix name, your product must be certified by X/
Open.) The answer is yes, and he expects this to happen in 1997. Bryan wants
to make sure Caldera does this right, getting any required patches back into the
mainstream Linux kernel so everyone will benefit from their work.

What This Means for Linux

Right now Linux is seeing substantial use as a system for connectivity, including
web servers, Internet Service Providers and gateway systems to connect office
networks to the Internet. With Caldera's new products, it is going to be much
easier for companies to put these systems together. This ease of use saves time
for the Linux-literate who want to get a system up, and makes it possible for
the newbie to buy an answer off the shelf. This means there really is an answer
to Windows NT.

Caldera Solutions

Phil Hughes is publisher of Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/033/1360s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/033/toc033.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Netactive SynergieServer Pro

Jonathan Gross

Issue #33, January 1997

Every machine is put together by an engineer who approves it for shipping.
Before it is shipped the same engineer writes a letter to the recipient explaining
the configuration and highlights of the system.

• Product Description: Pentium Pro Server machine.
• Netactive Systems, LTD.
• Price: $3,472 (as of August 5, 1996)
• Reviewer: Jonathan Gross

Sitting on my desk is a 100mhz 486DX-4 workstation with 32M of RAM. It has
cables falling out of the case, the cover is just sitting on the floor, the wiring is a
mess, and god only knows where the manuals for the components are. It took
me at least two days to get all the pieces working together, X configured, and
everything running relatively smoothly—and probably cost me around $2,000.

My DX4-100 is relatively fast; I can run a couple copies of XEmacs on it, and a
kernel compile takes around twelve minutes. Not too bad, and certainly better
than the 386-25 sitting in my closet next to it, or the 486-33 in the living room.

The DX4-100 was enough until something happened at work.

A company called Netactive Systems, Ltd. sent Linux Journal a machine to try
out—their SynergieServer Pro. My DX4-100 isn't so fast anymore.

I am impressed with Netactive. Usually when you buy a machine, either from a
local vendor or mail-order, it is a fairly sterile transaction. You hand them your
credit card and they blithely hand you a box full of electronics—it's kind of like
going to the Motel 6 of computer stores. Netactive is more like going to the
Four Seasons Olympic Hotel to buy a machine.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Every machine is put together by an engineer who approves it for shipping.
Before it is shipped the same engineer writes a letter to the recipient explaining
the configuration and highlights of the system. An excerpt from ours:

“Fundamentally, it does not take much engineering
excellence to put together a great $15,000 dollar Intel-
based computer; just buy a couple of everything with a
great big name on its shiny new box and throw it
together. It does, however, take a little bit of know-how
to make a truly great $3,500 machine...”

The letter goes on to explain that they put 64M of RAM and a nice video card
into it instead of SCSI Wide because Caldera (the installed Linux) is a GUI
environment, and the RAM and good video card are going to be a better use of
your money than faster disks.

This is cool. It gives you a much better idea of what is in the machine, and why
(and even that there is a “why”!) than the usual random checklist of
components does. The random list of components is also included, as is a
Sysadmins Configuration Guide, which lists all the configuration settings, from
IRQ and hardware addresses to domain name and host name of the machine
to the disk partitioning. Both the list of parts and the Sysadmin Configuration
Guide are sent loose with the other paperwork, and a second copy is taped to
the inside of the case. The other paperwork includes: a warranty certificate
(three years limited parts, and five year limited labor), the build sheet, and an
invoice, all with customer numbers, job number, and serial number for
technical support calls and tracking information.

Hardware

In the machine is:

• Motherboard: Asus P/I-P6NP5, Intel Nanoma (440FX) chipset with 4 PCI
slots, 1 PCI/Media Bus, 3 ISA slots, Optional Infra-red port, and 64MB FPM
DRAM, and an Intel Pentium Pro 200 Mhz chip (with a bearing heat sink
and fan).

• Drives: Asus PCI-SC2000 Fast SCSI-II HDD (NCR53c810), with a 2.1 GB
Seagate/Conner Fast SCSI-II, Teac CD56S 6x CD-ROM.

• Video: Diamond Stealth 64 Video 2001 with 2 MB DRAM, and a Princeton
EO15 15" monitor (1280x1024@70Hz, non-interlaced).

• And more: 3Com 595-T4 (10/100 MB/sec Ethernet), ESS 1688 16-bit
Soundblaster compatible sound card, Logitech mouse, 3.5" floppy drive,
Seagate TapeStor T-3200, 3.2 GB Travan Drive, and USR v.34 internal
modem, and, of course, all the manuals and documentation for
everything neatly packed in Manila envelopes.

This all came in a very nicely configured mid-tower case with a dual fan and
250W power supply with all wires neatly routed and tied off.

Software

Software pre-installed included:

• Caldera Network Desktop v1.0
• Caldera InterNet Office Suite v1.0
• X-Inside Accelerated X Server v1.2
• Red Hat 3.0.3 “Picasso” kernel 2.0.10
• Windows NT
• Dual Booting under NT Boot Loader

I fired it up, and after figuring out how to work the NT boot loader (which I
despise), Linux was all there, configured and running the way it should be
running. I never booted NT, but I assume it was configured just as carefully.

NT brought up the one thing I didn't like about this machine. I would rather use
LILO to boot Linux, and not have NT on the drive at all—I'm sure this
configuration could be requested if you too want a Linux-only set-up.

The system was fast—we ran the informal JonGrossSpeedTest (building a
kernel). Note that both machines had enough RAM so that swapping wasn't an
issue...

Jon Gross Machine Speed Test results:

For kernel version 2.0.10 on the Netactive machine (timed using time -v):

Command being timed: "make zImage"
 User time (seconds): 246.31
 System time (seconds): 26.29
 Percent of CPU this job got: 93%
 Elapsed (wall clock) time (h:mm:ss or m:ss): 4:50.37

For kernel version 2.0.10 on the DX4-100:

Command being timed: "make zImage"
 User time (seconds): 881.37
 System time (seconds): 117.16
 Percent of CPU this job got: 93%
 Elapsed (wall clock) time (h:mm:ss or m:ss): 17:49.15

Netactive has done a hell of a job putting together a computer system that is
fast, neat, clean and would be hard to build for the same price by buying parts
off the shelf.

Jonathan Gross is a Perl hacker and wants some faster machines. Donations
can be sent to info@linuxjournal.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/033/toc033.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Java and Client/Server

Joe Novosel

Issue #33, January 1997

So you think client-server programming is only for large applications?

Client-server applications are everywhere. Client-server can be defined as a
process which provides services to other processes. The client and server can
be run on the same machine or on different machines on opposite sides of the
world. A non-programming example of a client-server situation is the telephone
system. You are the client (or customer) and the central office is the server. By
having a telephone connected to the system (and your bill current!) you are
subscribing to the services that the central office provides. Requests are made
of the server (central office) to place and receive calls. The server also does
accounting on each call made or received and handles emergency (911)
requests. In this article I will present a simple CB (citizen's band) radio simulator
which was written for a class project. The server is written in C and the client is
written in Java. I will assume that the reader understands what sockets are and
has a rough idea of how they are used.

The specifications for the project were loosely:

• Provide a server which can accept multiple simultaneous connections. The
server should have a basic command set that will open and close the
connection, change the channel and provide a list of current clients on a
specific channel.

• Provide an “emergency channel” (9) that will broadcast all traffic to all
currently connected clients regardless of which channel they are
subscribed to.

• Client should “come up” on channel 19. This is the channel where CBers
meet. They then agree which channel to move to in order to continue
their conversation.

• The client should display all traffic on the current channel with the handle
of the person who sent the message.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

• The server can be either a single process concurrent or multiple process
server (more on this later).

Why Java?

Besides getting extra credit for doing a graphical user interface, I chose Java in
order to simplify programming of the client. Java is used specifically for the
following reasons:

• Portability. I was developing code at home on my Linux system and
running the code on Suns at school.

• Functionality. Not just for web page animations, Java is a very useful
programming language. Java is object-oriented and very similar to C and
C++. A simple user interface is relatively easy to write.

• Threads. Java allows multiple threads (like a background process) of
execution. A thread can be launched that will listen for incoming
messages. When a message comes in, it is automatically sent to output.
We start this thread and forget about it.

• Can be run remotely from Netscape (or similar browser). While I have not
currently implemented this feature, conceivably, web surfers looking at
your page could talk to each other using the CB simulator. There are many
restrictions to this which we will go into later.

Why Not C?

Using C for the client would require more programming to accomplish the
same results. First, some sort of GUI builder like Motif or X-Forms would need
to be used. I'm not knocking any of these, but not every system has them and
they can be difficult to learn and use. C does not have threads, so all I/O would
have to be polled. User input as well as incoming messages would have to be
polled and processed accordingly. Without a GUI, some type of command
codes would have to be developed for the user to control the client and server.
This would probably be very cryptic and difficult to use—not to mention difficult
to implement.

I developed the server first, from the specification in Table 1. Messages are
fixed length and must not vary from the given format. C handles transmissions
well through the use of structures and pointers; basically, you just call a write or
read routine, passing a pointer to the data structure, and the bytes come or go
without much of a problem. This works fine for C; Java is another story.

https://secure2.linuxjournal.com/ljarchive/LJ/033/0155s1.html

A Few Words on Sockets

Sockets work almost the same in Java as their counterparts in C. Since Java is
object-oriented, you must create an instance of the socket object. This is done
by a simple line of code:

Socket s = new Socket(hostName,portNumber);

where s is the instance of type Socket and hostName,portNumber are the
name of the host and port to connect to. But a socket by itself is not very useful
without a data input and data output stream. The code segment below sets up
a data input and output stream to talk to the socket:

dis= new DataInputStream(s.getInputStream());
dos= new DataOutputStream(new
BufferedOutputStream(s.getOutputStream()));

The output stream is created as a buffered output stream. Data will not be
written across the socket unless either Java feels that there is enough data to
write, or you force a write—using a flush by using something like: dos.flush();
this calls the flush method on the data output stream. On the reading side of
the socket, we can simply go into an infinite loop and poll for data from the
server, since the listener is running as a separate thread.

Java has most of the same basic data types as C, with a few exceptions. Java has
no unsigned integers, but it does have true booleans. To construct the data
packet, use a combination of Integers and an array of 120 bytes for the handle
and message fields. The data output and input streams have methods for
reading and writing integers and bytes. For example, dos.writeInt(1); would
write the integer “1” to the data output stream. Conversely, for (int i=0;i<120;i+

+) dos.writeByte(buffer[i]); (or dos.readByte(buffer[i]) to read) would write the
entire buffer to the socket; dos.flush() will make sure that the data is written
now and not delayed. It is important to note that we must write or read all of
the data (command, channel, handle and message) to or from the server even if
all we want to do is change the channel. The server expects this; otherwise it
will hang, waiting for all of the bytes to come or go.

One more obstacle remains. How to get the handle and message data into the
proper position in the byte array? In the event handler we create string objects
for the message and handle, then call the getBytes() method on the string
objects. message.getBytes(0,message.length(),buffer,20); will copy
message.length() bytes from the string object message starting at position 0 in
the string to the byte array buffer starting at position 20. One thing that is
missing in my program is error checking. It would be absolutely necessary in a
production program to check and recheck to make sure that you don't overflow
the buffer by writing more bytes than the buffer can hold.

The Server

The server is a simple single-process concurrent server. Simply put, the server
polls each connection, and processes requests in order. An alternative would
be to fork a new process for each incoming connection. In this situation the
single process server is far simpler (and, after all, the computer can only really
do one thing at a time). The basic order of things is:

1. Create the master socket on the well-known port.
2. Bind the socket so that incoming requests are directed to the proper

place.
3. Listen for connections.
4. Accept incoming connections.

The “well-known port” is a port which is known to all clients. All clients can't
connect to the same port, so the server “hands off” connection requests to a
different port. This is done by the TCP/IP layer, and we don't need to concern
ourselves about how. This process is analogous to that of making a phone call
to a large corporation's toll free number. Suppose that you wish to call
1-800-257-1234. You are asking the server for a connection on that port (phone)
number. This company probably has hundreds of lines, but you would not want
to try each of them until you finally got through, so the corporation has set up a
rotary on their lines to put connections through to the next available phone
line.

TCP/IP sockets work the same way. When a connection is accepted on a socket,
a new file descriptor is created. The file descriptor is used as an index to an
array of structures. Every client has exactly one unique file descriptor and a slot
in the client array. Each array position holds a structure which contains the
handle and current channel number. When the server receives a message
packet, it looks through the entire array and retransmits the message to all
clients who are subscribed to the channel number that the message came
from.

Currently supported server commands are:

• CB_ON sets the client's channel to 19 and sends a welcome message. It
also stores the handle in the client array.

• CB_OFF closes the socket and clears the client info from the client array.
• SET_CHAN changes the channel of the client in the client array.
• WHO_CHAN sends a message containing the handles of all connected

clients subscribed to the current channel.
• SEND-MESSAGE sends the message contained in the message field of the

data packet to each client subscribed to the same channel as the

originator. Emergency traffic on channel 9 is also sent to all connected
clients regardless of what channel they are subscribed to. As stated
earlier, the server must have all bytes in the data packet sent or received
at once. It is not possible (with this implementation) to send part of a
packet.

The Client

My original goal was to make a client that looked like a CB radio panel. This
turned out to be too difficult to do with Java; while Java is a good portable
programming language, creating a complex user interface is very difficult. I
adapted my client from an example in Java in a Nutshell by David Flanagan,
O'Reilly & Associates (an excellent book—great for reference). The CB client
user interface is very simple. A Connect menu is at the top. From here, the user
can quit or ask the server who is on the current channel. The middle window is
the message area. Here all messages from other users and the server are
listed. The client will print the handle and message from the data packet. The
server is responsible for the data in those packets as it will put “System: WHO”
in the handle for a WHO request. The bottom field is for entering a new
channel. When Java detects activity in the menu bar or channel field, it will call
the event handler routine. From here, it determines where the event came
from and performs the appropriate processing. The user interface is not much
—more a “proof of concept” than anything else—but it does provide much
more functionality in fewer lines of code than would be required by an
equivalent program written in C.

Endian Wars

The big vs. little endian debate has been the topic of many flame wars on the
Internet. But what is it? Big and little endian refers to the order of bytes. When
moving data around, some systems start with the most significant byte (MSB)
and some start with the least significant byte (LSB). Imagine an array of 4 bytes.
How do you store or send this array? Would you start at the LSB (little endian)
or would you start at the MSB (big endian)? Some hardware does it one way,
and some does it the other. Why do we care? If you are writing a client and
server in C to run on the same type of hardware, the endian problem doesn't
pop up. But if you are using a different language, like Java, to talk to a server
written in C, there could be a big problem. Endian problems crop up only when
multiple byte data types like integers are sent across the network. Java
automatically converts its data to and from network byte order when it sends
data through a socket. C, on the other hand, does only as it is told. There are
two C system calls, ntohl() and htonl(), which convert data to and from network
byte order. Read the man pages for these calls and use them in your C-based
servers and clients to avoid endian problems.

Java and Security

Java has some strict security restrictions. An applet can only open a socket to
the server on which it was loaded. Applications, on the other hand, are allowed
to open sockets to any machine. My client is written as a stand-alone
application for this reason. (I don't have access to a web server that will allow
me to run my CB server.) There are very few major differences between an
applet and an application. An applet extends the class applet and an
application extends the class frame. Refer to a book on Java for more specific
details.

Conclusion

This project was my first real attempt at client-server programming. I'm
hooked! With the basic server written, it is possible to extend the code to do
many things. I would like to eventually redesign the user interface to make it
look better and be easier to use. Having Linux at home has made the program
development process much easier. I was able to use the same tools on both my
home system and the Sun workstations at school so a simple recompilation
was all that was necessary for the server to run on a Sparc 5. My hope is that
someone else will find this work useful. No references could be found in any
Java book (I have three) to address this specific application. While client-server
applications were available in all of these books, all of the servers were written
in Java. Java works well for writing servers, but is not as fast and requires more
system resources to run. Every language has its place and Java is no exception.
Java is very useful as a client programming language; it's here to stay.

Take a look at the listings:

• Listing 1
• Listing 2
• Listing 3

References

• Java in a Nutshell
• David Flanagan (1996, O'Reilly & Associates, Inc)

• Java Programming Explorer
• Neil Bartlett, Alex Leslie, and Steve Simkin (1996, Coriolis Group Books)

• Teach Yourself Java in 21 Days
• Lemay and Perkins (1996 Sams.net publishing)

• Internetworking with TCP/IP vol III
• Comer and Stevens (1993, Prentice-Hall, Inc)

https://secure2.linuxjournal.com/ljarchive/LJ/033/0155l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/033/0155l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/033/0155l3.html

• The C Programming Language, second edition
• Kernighan and Ritchie (1988, 1978, Prentice Hall)
• Various Linux man pages

Joe Novosel (jnovosel@cc.gatech.edu) has been an avid computer hobbyist
since 1981, when his first computer (Radio Shack Color Computer) had a
whopping 4K of memory (including video memory!). He has been using Linux
for about two years—since version 1.1.47—and thinks Linux brings back the
excitement of his early days in computing. After several years in the electrical
trade, Joe decided to return to school and is now a Junior at Georgia Tech,
where he pursues a degree in Computer Science.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:jnovosel@cc.gatech.edu
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/033/toc033.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

CGI Programming

Reuven M. Lerner

Issue #33, January 1997

So you're gathering information from your surfers; what now?

This time, we are going to look at one of the most common things that people
want their CGI programs to do, namely save data to files on disk. By the end of
the column, we will have accumulated enough tools to produce a simple, but
functional guest-book program that will allow visitors to your site to save
comments that can be read by others.

For starters, let's look at a simple HTML form that will allow users to send data
to our CGI program, which we will call “entryform.pl”:

<HTML>
<Head>
<Title>Data entry form</Title>
</Head>
<Body>
<H1>Data entry form</H1>
<Form action="/cgi-bin/entryform.pl"
method=POST>
<P>Name: <input type=text name="name"
value=""></P>
<P>E-mail address: <input type=text
name="email" value=""></P>
<P>Address: <input type=text
name="address" value=""></P>
<P>Country: <input type=text
name="country" value=""></P>
<P>Male <input type=radio name="sex"
value="male">
Female <input type=radio name="sex"
value="female"></P>
<input type=submit>
</Form>
</Body>
</HTML>

Of course, an HTML form won't do anything on its own; it needs a CGI program
to accept and process its input. Below is a Perl5 program that, if named
“entryform.pl” and placed in the main “/cgi-bin” directory on a web server,
should print out the name-value pairs that arrive from the above form:

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

0 #!/usr/local/bin/perl5
1 # We want to use the CGI module
2 use CGI;
3 # Create a new CGI object
4 my $query = new CGI;
5 # Print an a appropriate MIME header
6 print $query->header("text/html");
7 # Print a title for the page
8 print $query->start_html(-title=>"Form
 contents");
9 # Print all of the name-value pairs
10 print $query->dump();
11 # Finish up the HTML
12 print $query->end_html;

Here's a quick run-down of what each line of code does:

Line 0 tells a Unix box where to find the Perl interpreter. If your copy of Perl is
called something else, you need to modify this line.

Without explicitly importing the CGI module in line 2, Perl wouldn't know how
to create and use CGI objects. (Trying to use code from a module you haven't
imported is guaranteed to confuse Perl and generate error messages.) We then
declare $query to be an instance of CGI (line 4).

We then tell the user's browser that our response will be HTML-formatted text,
and we do that by using a MIME header. The lack of a MIME header is the most
common reason for a 500 error; whenever one of your CGI programs produces
one of these, make sure that you aren't trying to print HTML before the header!
Note that line 6 is equivalent to saying:

print "Content-type: text/html\n\n";

which also tells the browser to expect text data formatted in HTML. In general,
though, I prefer to use the CGI object for readability reasons.

Line 8 creates the basic HTML necessary to begin the document, including
giving it the title, “Form contents”.

Line 10 uses the CGI object's built-in facility for “dumping” an HTML form's
contents in an easy-to-read format. This allows us to see what value was
assigned to each of the elements of the HTML form, which can be invaluable in
debugging problematic programs. For now, though, we are just using the CGI
“dump” method to get ourselves started and confirm that the program works.

Saving the Data to a File

Now that we have proven that our HTML form is sending data to our CGI
program, and that our program can send its output back to the user's web
browser, let's see what we can do with that data. For starters, let's try to save
the data from the form to a file on disk. (This is one of the most common tasks

that clients ask me to implement, usually because they want to collect data
about their visitors.)

#!/usr/local/bin/perl5
We want to use the CGI module
use CGI;
Set the filename to which we want the elements
saved
my $filename = "/tmp/formcontents";
Set the character that will separate fields in
the file
my $separation_character = "\t";
Create a new CGI object
my $query = new CGI;
--
Open the file for appending
open (FILE, ">>$filename") ||
 die "Cannot open \"$filename\"!\n";
Grab the elements of the HTML form
@names = $query->param;
Iterate through each element from the form,
writing each element to $filename. Separate
elements with $separation_character defined
above.
foreach $index (0 .. $#names)
{
 # Get the input from the appropriate
 # HTML form element
 $input = $query->param($names[$index]);
 # Remove any instances of
 # $separation_character
 $input =~ s/$separation_character//g;
 # Now add the input to the file
 print FILE $input;
 # Don't print the separation character
 # after the final element

print FILE $separation_character if
 ($index < $#names);
}
Print a newline after this user's entry
print FILE "\n";
Close the file
close (FILE);

Now thank the user for submitting his
information
Print an a appropriate MIME header
print $query->header("text/html");
Print a title for the page
print $query->start_html(-title=>"Thank you");
Print all of the name-value pairs
print "<P>Thank you for submitting the ";
print "form.</P>\n";
print "<P>Your information has been ";
print "saved to disk.</P7gt;\n";
Finish up the HTML
print $query->end_html;

The above program is virtually identical to the previous one, except that we
have added a section that takes each of the HTML form elements and saves
them to a file. Each line in the resulting file corresponds to a single press of the
HTML form's “submit” button.

The above program separates fields with a TAB character, but we could just as
easily have used commas, tildes or the letter “a”. Remember, though, that
someone is eventually going to want to use this data—either by importing it
into a database or by splitting it apart with Perl or another programming

language. To ensure that the user doesn't mess up our database format, we
remove any instances of the separation character in the user's input with Perl's
substitution(s) operator. A bit Draconian, but effective!

One of the biggest problems with the above program is that it depends on the
HTML form elements always coming in the same order. That is, if you have
elements X, Y and Z on an HTML form, will they be placed in @names in the
same order as they appear in the form? In alphabetical order? In random
order? To be honest, there isn't any way to be sure, since the CGI specifications
are silent on the matter. It's possible, then, that one user's form will be
submitted in the order (X, Y, Z), while another's will be submitted as (Y, Z, X)—
which could cause problems with our data file, in which fields are identified by
their position.

A simple fix is to maintain a list of the fields that we expect to receive from the
HTML form. This requires a bit more coordination between the program and
the form, but given that the same person often works on both, that's a minor
concern.

First, we define a list, @fields, near the top of the program. This list contains the
names of all of the fields that we expect to receive, in the order that we expect
to receive them:

my @fields = ("name",
 "email",
 "address",
 "country",
 "sex");

Next, we change the “foreach” loop (which places the field elements in the
output file) such that it iterates through the elements of @fields, rather than
@names.

foreach $index (0 .. $#fields)
{
 # Get the input from the appropriate HTML form
 # element
 $input = $query->param($fields[$index]);
 # Remove any instances of $separation_character

 $input =~ s/$separation_character//g;
 # Now add the input to the file
 print FILE $input;
 # Don't print the separation character after the
 # final element
 print FILE $separation_character if
 ($index < $#fields);
}

Required Fields

What if we want to make sure that users have filled out certain fields? This is
particularly important when we are collecting data about visitors to a site, and

want to make sure that we receive their names, addresses and other vital data.
A simple way to do that is to create a list, @required_fields, in which the
required fields are listed:

my @required_fields = ("name",
 "email",
 "address");

If you simply want a generic message indicating that one or more required
fields haven't been filled out, you can add the following subroutine at the
bottom of the program file:

sub missing_field
{
 # Print an a appropriate MIME header
 print $query->header("text/html");
 # Print a title for the page
 print $query->start_html(-title=>
 "Missing field(s)");
 # Tell the user what the error is
 print "<P>At least one required ";
 print "field is missing.</P>\n";
 # Finish up the HTML
 print $query->end_html;

}

We can then insert the following code into the program itself, just before we
open the file—since there isn't any reason to open the file if we are simply
going to close it again:

foreach $field (@required_fields)
{
 # Make sure that the field contains more than
 # just whitespace
 &missing_field if
 ($query->param($field) !~m/\w/);
 exit;
}

The above code will indeed do the trick, but gives a generic error message.
Wouldn't it be better to tell the user which field contains the error? We can do
that by modifying missing_field such that it takes an argument, as follows:

sub missing_field
{
 # Get our local variables
 my (@missing_fields) = @_;
 # Print an a appropriate MIME header
 print $query->header("text/html");
 # Print a title for the page
 print $query->start_html
 (-title=>"Missing field(s)");
 print "<P>You are missing the following ";
 print "required fields:</P>\n";
 print "\n";
 # Iterate through the missing fields, printing
 # them foreach $field (@missing_fields)
 {
 print " $field\n";
 }
 print "\n";

 # Finish up the HTML
 print $query->end_html;
 exit;
}

We then modify the loop that checks for required fields:

foreach $field (@required_fields)
{
 # Add the name of each missing field
 push (@missing_fields, $field) if
 ($query->param($field) !~ m/\w/);
}
If @missing_fields contains any elements, then
invoke the error routine
&missing_field(@missing_fields)
 if @missing_fields;

If we want to get really fancy, we can provide English names for each of the
required fields, so that users don't have to suffer through the names we used
with the HTML form. We can do that by using associative arrays:

$FULLNAME{"name"} = "your full name";
$FULLNAME{"email"} = "your e-mail address";
$FULLNAME{"address"} = "your mailing address";

Then we modify the foreach loop in &missing_fields such that it prints the full
name of the missing field, rather than the name associated with it on the HTML
form:

Iterate through the missing fields, printing
them foreach $field (@missing_fields)
{
 print " $FULLNAME{$field}\n";
}
print "\n";

Dying with Style

Remember that die statement we put in our original program? Well, think about
what will happen if that part of the program is ever truly invoked—die will
produce an error message, which is a good thing. But that error message will
be sent to our web browser, before the HTML header, giving us the dreaded
“Server error” message, indicating that something (but not saying what that
something is) has gone wrong with our script.

More useful would be a routine that printed the error message to the screen.
For example, we could add the following subroutine:

sub error_opening_file
{
 my ($filename) = @_;
 # Print an a appropriate MIME header
 print $query->header("text/html");
 # Print a title for the page
 print $query->start_html(-title=>"Error
 opening file");
 # Print the error
 print "Could not open the file

 \"$filename\".</P>\n";
 # Finish up the HTML
 print $query->end_html;
 exit;
}

And now, we can rewrite the “open” statement as follows:

open (FILE, ">>:$filename") ||
 &error_opening_file($filename);

You probably don't want to tell your users your program couldn't open a
particular file—not only do your users not care, but you don't need to tell them
which files you are using. A more user-friendly version of error_opening_file

could tell the user that the server is experiencing some trouble, or is
undergoing maintenance or give a similar message that doesn't broadcast
catastrophe to the world.

Bringing It All Together

The final version of the program, with (a) required fields, (b) full-English
descriptions of those fields, and (c) a better error message when we cannot
open the file, reads as follows:

#!/usr/local/bin/perl5
We want to use the CGI module
use CGI;
Set the filename to which we want the elements
saved
my $filename = "/tmp/formcontents";
Set the character that will separate fields in
the file
my $separation_character = "\t";
In what order do we want to print fields?
my @fields = ("name",
 "email",
 "address",
 "country",
 "sex");
Which fields are required?
my @required_fields = ("name",
 "email",
 "address");
What is the full name for each required field?
$FULLNAME{"name"} = "your full name";
$FULLNAME{"email"} = "your e-mail address";
$FULLNAME{"address"} = "your mailing address";
Create a new CGI object
my $query = new CGI;

Make sure that all required fields have arrived
foreach $field (@required_fields)
{
 # Add the name of each missing field
 push (@missing_fields, $field)
 if ($query->param($field) !~ m/\w/);
}
If any fields are missing, invoke the error
routine
&missing_field(@missing_fields)
 if @missing_fields;

Open the file for appending
 open (FILE, "7gt;>$filename") ||
 &error_opening_file($filename);
Grab the elements of the HTML form

@names = $query->param;
Iterate through each element from the form,
writing each element to $filename. Separate
elements with $separation_character defined
above.
foreach $index (0 .. $#fields)
{
 # Get the input from the appropriate HTML
 # form element
 $input = $query->param($fields[$index]);
 # Remove any instances of
 # $separation_character
 $input =~ s/$separation_character//g;
 # Now add the input to the file
 print FILE $input;
 # Don't print the separation character after
 # the final element
 print FILE $separation_character if
 ($index < $#fields);
}
Print a newline after this user's entry
print FILE "\n";
Close the file
close (FILE);

Now thank the user for submitting their
information
Print an a appropriate MIME header
print $query->header("text/html");
Print a title for the page
print $query->start_html(-title=>"Thank you");
Print all of the name-value pairs
print "<P>Thank you for submitting ";
print "the form.</P>\n";
print "<P>Your information has been ";
print "saved to disk.</P>\n";
Finish up the HTML
print $query->end_html;

Subroutines
sub missing_field
{
 # Get our local variables
 my (@missing_fields) = @_;
 # Print an a appropriate MIME header
 print $query->header("text/html");
 # Print a title for the page
 print $query->start_html(-title=>
 "Missing field(s)");
 print "<P>You are missing the following
 required fields:</P>\0";
 print "\n";
 # Iterate through the missing fields,
 # printing them
 foreach $field (@missing_fields)
 {
 print " $FULLNAME{$field}\n";
 }

 print "\n";

 print "\n";

 # Finish up the HTML
 print $query->end_html;

 exit;
}
sub error_opening_file
 {
 my ($filename) = @_;
 # Print an a appropriate MIME header
 print $query->header("text/html");
 # Print a title for the page
 print $query->start_html(-title=>
 "Error opening file");
 # Print the error
 print "Could not open the file

 \"$filename\".</P>\n";
 # Finish up the HTML
 print $query->end_html;
 exit;
 }

Creating a Guest-book

One of the most common CGI applications on the Web is a “guest-book”, which
allows visitors to a site to sign in, leaving their names, e-mail addresses and
short notes. We can easily construct such a program, using the basic
framework seen in the above programs. The only difference between the
“guestbook” program and the programs we have seen so far is that the guest-
book must be formatted in HTML in order for users to be able to read it in their
browsers.

Here is a very simple guest-book program that is virtually the same as the
previous program we saw:

<HTML>
<Head>
<Title>Guestbook entry</Title>
</Head>
<Body>
<H1>Guestbook entry</H1>
<Form action="/cgi-bin/guestbook.pl"
 method=POST>
<P>Name: <input type=text name="name"
 value=""></P>
<P>E-mail address: <input type=text name="email"
value=""></P>
<input type=submit>
</Form>
</Body>
</HTML>

The following program is the same as the one above, except that it saves data
to the “guestbook.html” and formats the data in HTML.

#!/usr/local/bin/perl5
We want to use the CGI module
use CGI;
Set the filename to which we want the elements
saved
my $filename =
"/home/reuven/Consulting/guestbook.html";
Set the character that will separate fields in
the file
my $separation_character = "</P><P>";
In what order do we want to print fields?
my @fields = ("name", "email");
Which fields are required?
my @required_fields = ("name", "email");
What is the full name for each required
field?
$FULLNAME{"name"} = "your full name";
$FULLNAME{"email"} = "your e-mail address";
Create a new CGI object
my $query = new CGI;

Make sure that all required fields have arrived
foreach $field (@required_fields)
{
 # Add the name of each missing field
 push (@missing_fields, $field) if

 ($query->param($field) !~ m/\w/);
}
If any fields are missing, invoke the error
routine
&missing_field(@missing_fields) if
 @missing_fields;
--
Open the file for appending
open (FILE, ">>$filename") ||
 &error_opening_file($filename);
Grab the elements of the HTML form
@names = $query->param;
Iterate through each element from the form,
writing each element to $filename. Separate
elements with $separation_character defined
above.
foreach $index (0 .. $#fields)
{
 # Get the input from the appropriate HTML form
 # element
 $input = $query->param($fields[$index]);
 # Remove any instances of $separation_character
 $input =~ s/$separation_character//g;
 # Now add the input to the file
 print FILE $input;
 # Don't print the separation character after the
 # final element
 print FILE $separation_character if
 ($index < $#fields);
}
Print a newline after this user's entry
print FILE "
<HR><P>\n\n";
Close the file
close (FILE);

Now thank the user for submitting his
information
Print an a appropriate MIME header
print $query->header("text/html");
Print a title for the page
print $query->start_html(-title=>"Thank you");
Print all of the name-value pairs
print "<P>Thank you for submitting ";
print "the form.</P>\n";
print "<P>Your information has been ";
print "saved to disk.</P>\n";
Finish up the HTML
print $query->end_html;
--
Subroutines
sub missing_field
{
 # Get our local variables
 my (@missing_fields) = @_;
 # Print an a appropriate MIME header
 print $query->header("text/html");
 # Print a title for the page
 print $query->start_html(-title=>"
 Missing field(s)");
 print "<P>You are missing the ";
 print "following required fields:</P>\n";
 print "\n";
 # Iterate through the missing fields, printing
 # them
 foreach $field (@missing_fields)
 {
 print " $FULLNAME{$field}\n";
 }
 print "\n";
 print "\n";
 # Finish up the HTML
 print $query->end_html;
 exit;
}
sub error_opening_file
{
 my ($filename) = @_;
 # Print an a appropriate MIME header

 print $query->header("text/html");
 # Print a title for the page
 print $query->start_html(-title=>
 "Error opening file");
 # Print the error
 print "Could not open the ";
 print "file \"$filename\".</P>\n";
 # Finish up the HTML
 print $query->end_html;
 exit;
}

The above program will take input from the HTML form and save the data in an
HTML-formatted file. If that file is accessible from the web server, your users
should be able to view others' entries in the guest-book.

Reuven M. Lerner (reuven@the-tech.mit.edu) (reuven@netvision.net.il) has
been playing with the Web since early 1993, when it seemed like more of a fun
toy than the world's Next Great Medium. He currently works from his
apartment in Haifa, Israel as an independent Internet and Web consultant.
When not working on the Web or informally volunteering with school-age
children, he enjoys reading (just about any subject, but especially computers,
politics, and philosophy—separately and together), cooking, solving crossword
puzzles and hiking.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:reuven@the-tech.mit.edu
mailto:reuven@netvision.net.il
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/033/toc033.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

unzip

Greg Roelofs

Issue #33, January 1997

Primer on zip, unzip, pkzip.

As much as we all love Linux, it is nevertheless true that occasionally we must
force ourselves to deal with the DOS/MS-Windows world, however indirectly.
For some of us that involves having a dual-boot system (perhaps via LILO—the
LInux LOader—or OS/2's Boot Manager), but even those of us who manage to
avoid that fate will sooner or later come across files that originated on some
flavor of DOS or Windows system. More than likely, a few of those files will end
in .zip—and that's where the unzip command comes in.

unzip is a free utility to process zipfiles, as these things are generally called.
Zipfiles are actually archives of one or more other files, almost always
compressed to save disk space and/or transmission time. In this regard they
are similar to compressed tar archives, which are those files usually ending in
.tar.Z, .tar.gz or .tgz that one finds on most Linux ftp sites and many CD-ROM
distributions. One major difference between zip files and tar archives:
compressed tar archives bundle all of the files together and then compress the
result as a single entity; zipfiles compress individual files, then store them in the
archive. This zip file method isn't quite as efficient in achieving the maximal
overall compression, but it does allow you to list the archive's contents and to
extract individual files without decompressing the whole mess.

Listing

How does one actually use unzip to list an archive's contents? The simplest way
is with the -l option (for “list”):

$ unzip -l quake92p.zip
Archive: quake92p.zip
 Length Date Time Name
 ------ ---- ---- ----
 36064 06-25-96 13:18 DEICE.EXE
 369135 06-27-96 03:51 QUAKE92P.1
 2618 06-27-96 03:34 README.TXT

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 177 06-25-96 20:07 INSTALL.BAT
 206 06-27-96 03:54 QUAKE92P.DAT
 ------ -------
 408200 5 files

You have each file's name (on the right), its uncompressed size, and the date
and time of its last modification. For many of us, however, especially those long
steeped in the terse intricacies of ls, this is a little too short and sweet. For fans
of ls, or for anyone wishing to know more about the details of the archive,
unzip has an entire mode devoted to listing both useful and obscure zipfile
information: zipinfo mode, triggered via the -Z option. (On some systems the
zipinfo command exists as a link to unzip and is synonymous with unzip -Z, but
this is not true of Slackware distributions as of this writing.) We'll limit ourselves
to a description of the default zipinfo listing format:

$ unzip -Z quake92p.zip
Archive: quake92p.zip 406075 bytes 5 files
-rwxa-- 2.0 fat 36064 b- defN 25-Jun-96 13:18 DEICE.EXE
-rw-a-- 2.0 fat 369135 b- stor 27-Jun-96 03:51 QUAKE92P.1
-rw-a-- 2.0 fat 2618 t- defN 27-Jun-96 03:34 README.TXT
-rwxa-- 2.0 fat 177 t- defN 25-Jun-96 20:07 INSTALL.BAT
-rw-a-- 2.0 fat 206 t- defN 27-Jun-96 03:54 QUAKE92P.DAT
5 files, 408200 bytes uncompressed, 405569 bytes compressed: 0.6%

You will immediately recognize a certain resemblance to the output of ls -l. The
header line gives the archive name, its total size, and the total number of files in
it; the trailer gives the number of files listed (in this case all of them), the total
uncompressed and compressed data size of the listed files (not counting
internal zipfile headers), and the compression ratio. Here the ratio is quite
poor, mostly due to the fact that the largest file (QUAKE92P.1) is stored without
any compression. In the leftmost column are the file permissions. The next
column indicates the version of the archiver, and the one after that is what tells
us the files came from the FAT (DOS) file system. Next are the uncompressed
file size and a column indicating which files are most likely to be binary and
which are probably text. The next three columns note the compression method
used on each file; the time stamps; and the full file names.

Extracting

Now that we know what files we have, how do we actually get the files out? File
extraction is as simple as typing unzip and the file name:

$unzip quake92p
Archive: quake92p.zip
 inflating: DEICE.EXE
 extracting: QUAKE92P.1
 inflating: README.TXT
 inflating: INSTALL.BAT
 inflating: QUAKE92P.DAT

Here we've omitted the .zip suffix; unzip first looks for the file quake92p and,
not finding it, checks for quake92p.zip instead. What if we wanted only the

README.TXT file? No problem. Anything (well, almost anything) after the zipfile
name is taken to be the name of one of the enclosed files:

$unzip quake92p README.TXT
Archive: quake92p.zip
 inflating: README.TXT

Here you may notice a little snag. If you now edit this file in Linux with an editor
like vi, you'll see what looks like ^M at the end of each and every line. Or, if you
view the file with a pager like more, you'll discover that any line uncovered by
the --More-- prompt gets erased immediately. These problems are due to
the fact that DOS and its successors store text files with two end-of-line
characters, CR and LF (a.k.a. carriage return and linefeed, respectively, or ^M
and ^J, or CTRL-M and CTRL-J), rather than the more efficient single character
(LF) used on all Unix systems. So when a Unix utility—like an editor or a pager
or a compiler—looks at a DOS text file, it may behave a little oddly or die
altogether.

Fortunately there's a simple solution: unzip's -a option. Originally a mnemonic
for ASCII conversion, the option these days is used for all sorts of text-file
conversions. As a single-letter option it does its best to automatically convert
files that are supposedly text, while leaving alone those that are marked binary.
Be careful! zip and PKZIP don't always guess correctly when creating the
archive, particularly for certain classes of MS-Windows files, and unzip's “text”
conversions are almost always irreversible. In other words, don't extract with
auto-conversion and then delete the original zipfile without first making sure
everything is Okay. unzip does indicate which files it thinks are text when auto-
converting, however:

$ unzip -a quake92p
Archive: quake92p.zip
inflating: DEICE.EXE [binary]
extracting: QUAKE92P.1 [binary]
inflating: README.TXT [text]
inflating: INSTALL.BAT [text]
inflating: QUAKE92P.DAT [text]

In this case everything worked as intended. If, for some reason, zip marked a
text file as binary and you want to force text conversion, simply double the
option: -aa.

But wait, there's more! The discriminating Linux user, happily accustomed to a
file system that not only preserves the case of file names but also distinguishes
between names differing only in case, is not going to settle for a bunch of all
uppercase DOS file names in his or her directories. Enter the -L option. If (and
only if) the file came from a single case file system like DOS FAT or VMS, unzip -

L will convert it to lowercase upon extraction, thusly:

$ unzip -aL quake92p
Archive: quake92p.zip
 inflating: deice.exe [binary]
 extracting: quake92p.1 [binary]
 inflating: readme.txt [text]
 inflating: install.bat [text]
 inflating: quake92p.dat [text]

Isn't that nice?

Testing

So now you've just downloaded a whole bunch of zipfiles but don't want to
unpack them just to make sure they're Okay. What's the solution? Use the -t
option to test them:

$ unzip -t quake92p
Archive: quake92p.zip
 testing: DEICE.EXE OK
 testing: QUAKE92P.1 OK
 testing: README.TXT OK
 testing: INSTALL.BAT OK
 testing: QUAKE92P.DAT OK
No errors detected in compressed data of quake92p.zip.

Here we tested only one, and the output is a little too verbose—we really want
only the one-line summary for each archive. unzip supports both a -q option for
various levels of quietness (the more q's, the quieter) and the concept of
wildcards, both for the internal files and for the zipfiles themselves:

$ unzip -tq *.zip
No errors detected in compressed data of arena2b-grr.zip.
No errors detected in compressed data of PngSuite.zip.
No errors detected in compressed data of libgr2-elf-install.zip.
No errors detected in compressed data of ppmz-7.3.zip.
arithc.c bad CRC e220fe9c (should be 1c24998c)
At least one error was detected in macm.zip.
No errors detected in compressed data of xfer-zip151.zip.
No errors detected in compressed data of quake091.zip.
No errors detected in compressed data of quake92p.zip.
No errors detected in compressed data of p93b2200.zip.

8 archives were successfully processed.
1 archive had fatal errors.

Note that the wildcard character (“*”) is escaped with a backslash (“\”). Most
shells expand wildcards themselves, and if we allowed that, unzip would see
the command line as a list of archives; it would treat the first one as the zipfile
name and the rest as files to be tested within the first one. By escaping the
wildcard, we allow unzip to do its own directory search and wildcard-matching
—which, incidentally, has the advantage that Unix-style regular expressions
(very powerful wildcards) can be used not only under Linux but under all of the
operating systems for which unzip ports exist, even plain old DOS.

The other thing to notice is that one of the archives has an error in it. Perhaps
there was a transmission error, or maybe the original was damaged when it

was created; either way, the file arithc.c in macm.zip is probably not going to be
usable. It's always good to know these sorts of things sooner rather than later.

There are quite a few other options and modifiers not covered here; a full
tutorial would occupy most of this magazine. Fortunately, the unzip and zipinfo
man pages (man unzip and man zipinfo) contain a complete listing of all of the
options and examples for many of them. Unfortunately, Slackware 3.0 and
earlier don't include the zipinfo man page. An abbreviated summary of zipinfo's
options is available by typing unzip -Z . Similarly, a summary of most of unzip's
options can be had simply by typing unzip with no parameters.

History, Acknowledgments, Pointers and the Future

unzip, zipinfo, zip and their kin were written by the Info-ZIP group, an Internet-
based collection of strange beings from another universe who are currently
scattered all over the planet. Yours truly (that would be me) is the principal
author of unzip and zipinfo, but literally hundreds of people have contributed
to them. Originally based on code by Samuel H. Smith, unzip has since been
completely rewritten, with the exception of one routine which is no longer
included by default. Nevertheless, we certainly owe him a debt of gratitude for
getting us into this pickle. It would probably also be nice to mention the folks at
PKWARE, whose PKZIP and PKUNZIP programs are the source of most of the
DOS-originated zipfiles in the world. Note that Info-ZIP's programs are intended
to be compatible with PKWARE's zipfiles, but they are not clones of PKWARE's
programs. (For example, unzip recreates stored zipfile directory trees by
default, whereas PKUNZIP requires a special option to do it.

Note also that while zip and gzip (sometimes called “GNU zip”) have similar
names, a similar heritage—Jean-loup Gailly and Mark Adler are the co-authors
of the latter and are also long-standing members of the Info-ZIP group—and
the same compression engine, the two programs are basically incompatible.
The same goes for unzip and gunzip. Jean-loup never foresaw the confusion
that would arise from the similarity, and I was too late in suggesting the
obvious, sick alternative (feather*) to get the name changed.

On a more serious note, the current version of unzip is 5.2, and 5.21 will be out
by the time you read this. While everything discussed above works equally well
with the previous version (5.12), there are various new features and other
improvements that make 5.2 worth getting. You can find the latest public
releases of source code and executables at UUNET's anonymous ftp site:

ftp://ftp.uu.net/pub/archiving/zip/ ftp://ftp.uu.net/pub/archiving/zip/UNIX/
LINUX/

You can also find news, history, descriptions of certain weirdos, and pointers to
other ftp sites around the world at the following web site:

http://quest.jpl.nasa.gov/Info-ZIP-

Greg Roelofs escaped from the University of Chicago with a degree in
astrophysics and fled screaming to Silicon Valley, where he now does really cool
graphics and compression stuff for Philips Research. He joined Info-ZIP in the
spring of 1990, shortly after the group formed, and under his dark influence the
group has nearly achieved its goal of Total Universal Reconstructive
Disintegration, lacking only a better acronym in order to complete their plans.
He's also the father of the Cutest Baby in the Known Universe. He be reached
by e-mail at newt@uchicago.edu or on the Web at quest.jpl.nasa.gov/Info-ZIP/
people/greg/.

[---- this is a footnote ----] * So all of the archives on Sunsite would be...yes, you
guessed it: tar'd and feather'd. Bwah ha ha ha ha ha ha! If only.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:newt@uchicago.edu
http://quest.jpl.nasa.gov/Info-ZIP/people/greg/
http://quest.jpl.nasa.gov/Info-ZIP/people/greg/
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/033/toc033.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

New Products

Margie Richardson

Issue #33, January 1997

High Speed Intelligent Multi-port Card, TEAMate Server Software, SPATCH
Alphanumeric Paging Software Upgrades and more.

High Speed Intelligent Multi-port Card

Cyclades Corporation announced its next generation of high performance
intelligent PCI multi-port card—CYCLOM-8Zo. This card has a 32-bit RISC
processor, PCI bus and RS232 serial channels and built-in surge protection.
CYCLOM-8Zo is able to sustain baud rates of 460Kbps full duplex
simultaneously on all 8 channels with low CPU overhead. It is available with
octopus cable for $695 (special promotional price of $421 to ISPs).

Contact: Cyclades Corporation, 41934 Christy Street, Fremont, CA 94538,
Phone: 510-770-9727, Fax: 510-770-0355, E-mail: sales@cyclades.com, http://
www.cyclades.com/.

TEAMate Server Software

MMB Development announced TEAMate Server Software, a package of the 9
most popular out-of-the-box web applications available for Linux at a price of
$895. The nine applications included are Chat, Forums, Classified Ads, Mail,
Catalogs, Maps, Event Calendars, User Home Pages and Server Content
Indexing. Included in the package are TEAMate's web, VT100 and GUI
interfaces.

Contact: MMB Development Corporation, 904 Manhattan Ave., Manhattan
Beach, CA 90266, Phone: 800-832-6022, Fax: 310-318-2162, E-mail:
query@mmb.com, http://teamate.mmb.com.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

SPATCH Alphanumeric Paging Software Upgrades

The Hyde Company has announced several upgrades to its base SPATCH
alphanumeric paging software for Unix, includes Linux. With SPATCH users can
send text messages to an alphanumeric pager, an application, an operating
system or an e-mail system. One, Version 3 of it ISP solution to give ISPs the
ability to offer an e-mail forwarding service to their clients has been released.
Two, SPATCH-XL has been released for use by companies that need multiple
modems to send alpha pages (supports 2 to 256 modems). Three, PagePage
has been released to allow alphanumeric paging on an Intranet and works in
any Intranet/Internet environment. Four, Echelon Page has been released to
enhance the abilities of the SPATCH command line interface which allows users
to send messages about system alarms and events to a pager. SPATCH base
package starts at $199 for single user.

Contact: The Hyde Company, P.O. Box 900190, Atlanta, Georgia 30329, Phone:
770-495-0718, Fax: 770-476-7626, E-Mail: spatch@america.net, http://
www.spatch.com/.

New Linux Books and Software

O'Reilly & Associates announces several new offerings for the Linux
enthusiasts. Linux Multimedia Guide by Jeff Tranter is the first guide for
developing multimedia applications using the Linux operating system. The
second editions of Running Linux by Matt Welsh and Lar Kaufman and the
Running Linux Companion CD-ROM (Red Hat Software) together provide
everything one needs to install and use Linux on a PC. O'Reilly also added Linux
in a Nutshell by Jessica Hekman to its Nutshell reference series. For pricing
contact O'Reilly & Associates, Inc.

Contact: O'Reilly & associates, Inc., 103 Morris Street, Suite A, Sebastopol, CA
95472, Phone: 800-998-9938, Fax: 707-829-0104, E-mail: sara@ora.com.

Accelerated-X Server for Linux

WorkGroup Solutions, Inc. announced the release of Version 2.1 of Accelerated-
X Server for Linux. Accelerated-X is the fastest, easiest to install and most
compatible Xserver available. It contains a full Linux port of the X Windows
X11R6.1 Graphics Engine, support more graphics boards than ever before, and
is CDE-read (Common Desktop Environment) and capable. Accelerated-X
Version 2.1 was developed by X Inside, and greatly improves graphics speed. It
is available for $99.

Contact: WorkGroup Solutions, Inc., Department WEX016, P.O. Box 460190,
Aurora CO 80046-0190, Phone: 800-234-7813, Fax: 303-699-2703, E-mail:
sales@wgs.com, http://www.wgs.com/.

Red Hat Linux 4.0

Red Hat Software announced today the availability of Red Hat Linux 4.0. Red
Hat Linux version 4.0 features many substantial improvements. These include
more hardware support, simplified installation, dramatic performance
improvements, and many more. The most important new feature is Red Hat
Linux can now be used on Sun Microsystems SPARC and compatible
computers, in addition to Digital Alpha, and Intel compatible PC platforms. Red
Hat Linux 4.0 for Intel compatible computers is available for only $49.95. Red
Hat Linux 4.0 for SPARC and Alpha editions are available immediately ready-to-
install from CD-ROM for only $99.95 per copy.

Contact: Red Hat Software, Inc., 3203 Yorktown Rd, Suite 123, Durham, NC
27713, Phone: 800-454-5502, Fax: 919-572-6726, E-mail: bob@redhat.com,
http://www.redhat.com/.

Silent Messenger for Linux

Silent Messenger from MessageNet Systems is a multiuser client/server paging
gateway. It allows users to easily format messages and send that message via
alphanumeric, digital and vibrating pagers. Software can be downloaded free
with some restrictions (no support) from the web at http://www.trader.com/
users/5013/3977/smparts.htm. Pricing depends on number of pagers, display
boards and users—contact company directly.

Contact: MessageNet Systems, 4825 Pinebrook Dr., Novlesville, IN 46060,
Phone: 800-577-2613, E-mail MessageNet@trader.com, http://www.trader.com/
users/5013/3977/smparts.htm.

RAStel—integrated multi-link voice, data and fax card

Australian communications developer Moreton Bay Ventures has announced
the release of RAStel, a remote-access solution that integrates multiple-link
voice, data and fax in a single PC communications card. RAStel is available with
four V.34+ modem ports or alternatively, two V.34+ modem ports and two high
speed serial ports. Using multiple RAStel cards, a single PC server can connect
directly to up to 32 telephone lines. RAStel supports all leading desktop and
server operating systems including Linux. RAStel is immediately available from
Moreton Bay Ventures directly or through its distribution partners in Australia
and USA. The four modem RAStel model has a list price of $1495USD.

Moreton Bay Ventures, PO Box 925, Kenmore QLD 4069, Australia, Tel: +61 7
3279-1822, Fax: +61 7 3279-1820, Email: sales@moreton.com.au, http://
www.moreton.com.au/moreton/

Mylex BusLogic SCSI Adapters for Linux

Mylex Corporation has expanded Linux operating system support to its
BusLogic brand of FlashPoint Ultra SCSI host adapters. All of BusLogic's other
SCSI host adapters, including the MultiMaster line, currently support the Linux
operating system. Linux drivers and information are available at http://
www.dandelion.com/Linux/.

Contact: Mylex Corporation, 34551 Ardenwood Blvd., Fremont, CA. 94555,
Phone: 800-77-MYLEX, Fax: 510-745-7654, E-mail: peters@mylex.com, http://
www.mylex.com/.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/033/toc033.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Two Cent Tips

Marjorie Richardson

Issue #33, January 1997

Newbie Tip on Finding

As a new Linux user, I discovered that I had a hard time finding my way around
the file system. I knew the find command was out there, but remembering all
the options required to make it search the right places, find the right files, and
print the right answers was something I couldn't do, at first. So I made up my
own command, using a shell script, and called it fnd.

fnd takes one argument, the name of the file you want to locate, complete with
any wildcards you may wish to include, and pipes its output to less, which then
allows you to view a large list of results. What you get, on each line of output, is
the complete path to any file that you're looking for. I find it amazingly useful
(as is a rough familiarity with the less command). Here's my script:

!/bin/bash
find / -iname $1 -mount -print |less

That's it. The -iname option tells find to be case insensitive, the $1 is a variable
that substitutes in your command line argument, -mount tells find not to
search directories on other file systems like your CD-ROM (because mine is
wonky and locks up the machine if it is accessed). The -print option is required
or you don't get any output. (Get used to it, it's *nix.) The | (pipe) symbol tells
find to direct its output to the less command, so you can see your results in
style. Don't forget the / right after the find command, or it won't know where to
look. Enjoy. You won't regret the time you spend keying in this little shortcut,
and don't forget to put it in a bin or sbin directory after using chmod to make it
executable. —Jim Murphymurphyc@cadvision.com

X Term Titlebar Function

In the mail from issue 9, Jim Murphy says that the -print option to find is
necessary to get output from the find command, and follows that up with “get

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

used to it, it's *nix.” Well, he's part right. Linux does require this. However, any
users who work on other Unix boxes will find slight differences in some of the
common CLI (Command Line Interface) commands. For example, find on
Solaris does not require the -print option to get output. Just food for thought.

Second, I have an xterm title bar function that people might find useful. I'll give
the code first, then explain what it does.

In your .bashrc (or .kshrc—note this only works on ksh style shells) add the
following:

HOSTNAME=`uname -n`
if ["$TERM" = x"term"] && ["$0" =
"-bash"]
then<\n>
 ilabel () { echo -n "^[]1;$*^G"; }
 label () { echo -n ^"[]2;$*^G"; }
 alias stripe='label $HOSTNAME - ${PWD#$HOME/}'
 alias stripe2='label $HOSTNAME - vi $*'
 cds () { "cd" $*; eval stripe; }
 vis () { eval stripe2; "vi" $*; eval stripe;}
 alias cd=cds
 alias vi=vis
 eval stripe
 eval ilabel "$HOSTNAME"
fi

This does three things (as long as you're in an xterm and running bash):

1. When the xterm is first opened, the name of the current host is displayed
in the title bar.

2. When you change directories (using cd), the current path is displayed in
the xterm title bar with the user's $HOME directory stripped off the front
end of the path (to save some space when you're somewhere in your own
directory tree). The path is preceded by the current host's network name.

3. When you use vi to edit a file, the name of the file is displayed in the title
bar along with the current host's name. When you exit your vi session, the
title bar reverts to the hostname/path format described in #2 above.

I find this very useful for all my ksh-based systems, because it removed the
path from my shell prompt, thus saving me space for prompt commands. Since
bash is a ksh compatible shell, this works quite well on standard Linux systems.
—Michael J. Hammelmjhammel@csn.net

Find and Alternatives

Saw Jim Murphy's find tip in issue #9, and thought you might like a quicker
method. I don't know about other distributions, but Slackware and Red Hat
come with the GNU versions of locate(1) and updatedb(1), which use an index
to find the files you want. The updatedb(1) program should be run once a night

from the crontab facility. To ignore certain sub-directories (like your /cdrom),
use the following syntax for the crontab file:

41 5 * * * updatedb --prunepaths="/tmp /var \
 /proc /cdrom" > /dev/null 2>&1

This command would run every morning at 5:41 AM, and update the database
with file names from everywhere except the subdirectories (and those below)
listed.

To locate a file, just type locate file name. The file name doesn't have to be
complete; locate can also do partial matching. For me, the search typically takes
only a few seconds, and I have tens of thousands of files.

The locate(1) command also has regular expression matching, but I often just
pipe it through agrep(1) (a faster grep) to narrow the search. Thus:

locate locate | agrep -v man

would exclude the man page, and only show me the binary and the sources, if I
had them on-line. (The -v flag excludes the pattern used as an argument.) To
get the binary files alone, along with a complete directory listing, use the
following command:

ls -l `locate locate | agrep bin`

The find(1) command is a great “swiss-army knife” (and actually not that bad
once you get used to it), but for the 90% of the cases where you just want to
search by file name, the locate(1) command is far faster, and much easier to
use. —Bill Duncan, VE3IEDbduncan@ve3ied.uucp

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/033/toc033.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

	Features
	News & Articles
	Reviews
	WWWsmith
	Columns
	Let Linux Speak
	David Sugar

	Booting Linux from EPROM
	Dave Bennett
	Overview
	System Operation
	Development
	Programming EPROMs
	DOS boot SSD
	Conclusion

	Using Linux with Programmable Logic Controllers
	J.P.G. Quintana
	Programmable Logic Controllers
	PLCs and Linux
	Acknowledgements and Notices
	References

	Disk Maintenance under Linux (Disk Recovery)
	David A. Bandel
	Preparations
	fsck—The File System Checker
	Some Common fsck Messages
	The lost+found Directories
	Down in the Dumps
	badblocks
	Enter debugfs
	Summary

	Satellite Tracking with Linux
	Kenneth E. Harker
	Information about SatTrack

	Free SCO OpenServer Has Its Place
	Evan Leibovitch

	Interview: Caldera's Bryan Sparks
	Phil Hughes
	Three New Products
	What This Means for Linux

	Netactive SynergieServer Pro
	Jonathan Gross
	Hardware
	Software

	Java and Client/Server
	Joe Novosel
	Why Java?
	Why Not C?
	A Few Words on Sockets
	The Server
	The Client
	Endian Wars
	Java and Security
	Conclusion
	References

	CGI Programming
	Reuven M. Lerner
	Saving the Data to a File
	Required Fields
	Dying with Style
	Bringing It All Together
	Creating a Guest-book

	unzip
	Greg Roelofs
	Listing
	Extracting
	Testing
	History, Acknowledgments, Pointers and the
Future

	New Products
	Margie Richardson
	High Speed Intelligent Multi-port Card
	TEAMate Server Software
	SPATCH Alphanumeric Paging Software
Upgrades
	New Linux Books and Software
	Accelerated-X Server for Linux
	Red Hat Linux 4.0
	Silent Messenger for Linux
	RAStel—integrated multi-link voice, data and
fax card
	Mylex BusLogic SCSI Adapters for Linux

	Two Cent Tips
	Marjorie Richardson
	X Term Titlebar Function
	Find and Alternatives

